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Background
The continual advancements and breakthroughs in tran-
scriptomic technology [1–3] have allowed researchers 
to conduct in-depth studies at the transcriptomic level 
in Sus scrofa (pig or swine). The main aim is to discover 
intrinsic information, such as gene expression regula-
tion mechanisms [4], immune responses [5], functional 
genes [6], and metabolic pathways [7]. For example, one 
study completed transcriptome gene annotation across 
multiple species, including pigs [8]. A highly integrated 
resource of transcriptomic features was provided by 
detailed analysis of the swine transcriptomic landscape, 
laying a solid foundation for research at the transcrip-
tomic level in pigs [9]. The rapid development of swine 
transcriptomic technology has significantly aided 
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Abstract
The use of single-cell sequencing technology for single-cell transcriptomics studies in pigs is expanding 
progressively. However, the comprehensive classification of cell types across different anatomical tissues and organs 
of pig in multiple datasets remains relatively limited. This study employs single-cell and single-nucleus sequencing 
technologies in Bama pig to identify unique marker genes and their corresponding transcriptomic profiles across 
diverse cell types in various anatomical tissues and organs, including subcutaneous fat, visceral fat, psoas major 
muscle, liver, spleen, lung, and kidney. Through detailed data analyses, we observed widespread cellular diversity 
across various anatomical tissues and organs of Bama pig. This work contributes a comprehensive dataset that 
supports physiological studies and aids in the identification and prediction of potential marker genes through 
single-cell transcriptomics of these tissues. The methodologies and data employed in this study are designed to 
improve the accuracy of cell type identification and ensure consistent cell type allocation.
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research on disease and improvements in breeding [10, 
11].

Although traditional transcriptomic methods, such as 
bulk RNA sequencing, have significantly advanced the 
understanding of gene expression, they fail to capture 
cellular heterogeneity at the single-cell level [12]. Single-
cell RNA sequencing technologies [13] have recently 
emerged as vital tools for investigating cellular heteroge-
neity and for single-cell research [14]. Recently, a compre-
hensive account of the immense potential and challenges 
of single-cell technologies was provided [15]. The feasi-
bility of conducting systematic analyses and constructing 
comprehensive atlases at the single-cell, single-nucleus 
level even in tissues where endothelial cells constitute a 
minority has been demonstrated [16]. Notably, during 
the global outbreak of African swine fever in 2018, virus-
regulated signaling pathways were discovered via single-
cell technologies, providing crucial scientific evidence for 
disease control strategies [17]. Research on porcine single 
cells will profoundly impact the understanding of biologi-
cal complexity and contribute to solving pressing issues 
such as disease [18, 19].

The Bama pig is a small pig breed that bears physi-
ological, anatomical, nutritional, metabolic, and disease-
related similarities to humans, making it extensively 
used in human disease research [20, 21]. Concurrently, 
extensive research has been conducted on Yucatan min-
iature pigs, particularly in cardiac [22], peripheral blood 
[23], colonic [24], and kidney [25] pig tissues, via single-
cell sequencing. However, the application of single-cell 
sequencing technology in transcriptomic studies of Bama 
pig remains relatively limited. Specifically, research into 
systematically defining unique marker genes in the vis-
ceral tissues of Bama pig is limited.

Methods
Animals and sample collection
The research utilized an adult female purebred Chinese 
Bama pig (2 years old, 45 kg) provided by Hengshu Bio-
Technology Co., Ltd., Yibin, Sichuan, China. The pig was 
maintained in a stably controlled laboratory environ-
ment, with the room temperature set at 25–28  °C and 
the humidity at 70%. The feed energy level required for 
animal maintenance was determined on the basis of the 
NRC (2012) and the Chinese Fatty Growing and Finish-
ing Pig Feeding Standards (2004). After 12  h of fasting, 
the pig was placed in a restraint bag, and Zoletil®50 anes-
thetic was injected into the well-developed neck muscles 
using a 14-gauge needle at a dose of 5  mg/kg. Subse-
quently, the pig was slaughtered, and samples from seven 
organs or tissues, namely, the liver, spleen, lung, kidney, 
psoas major muscle (PMM), subcutaneous adipose tissue 
of the back (SAT), and greater omentum (GOM), were 
collected.

Tissue preparation for single-cell (scRNA-seq) libraries 
(liver, spleen, lung, kidney): Tissues intended for single-
cell RNA sequencing library generation were obtained 
from a local slaughterhouse. Freshly collected tissues 
were immediately placed on ice and processed within 
30 min. Each type of tissue was dissociated and digested 
separately. To ensure effective digestion and maintain cell 
viability, after tissue dissociation, the cell suspensions 
were passed through a cell strainer to remove debris and 
lyse red blood cells. Cell viability for each tissue type was 
assessed at the core facility of Novogene Co., Ltd. (Bei-
jing, China) via a flow cytometer (Acea Bioscience, Inc., 
US), which employs Hoechst 33,342 (Invitrogen, Cat# 
H3570) and propidium iodide (Thermo Fisher Scien-
tific, Cat# P3566), with a viability threshold of over 80% 
required for subsequent sequencing analyses.

Liver
Fresh livers were sampled from five distinct anatomical 
regions: the left lateral lobe (LLL), left medial lobe (LML), 
right medial lobe (RML), right lateral lobe (RLL), and 
quadrate lobe (QL). Each region provided 1  g of tissue, 
which was washed twice with cold PBS. The tissues were 
mixed, chopped into small pieces, and then transferred 
to a 50 mL tube, to which 20 mL of digestion solution 
was added. This mixture contained 0.5  mg/mL collage-
nase type II (Gibco, Cat#17101015), 1.25  mg/mL prote-
ase (Sigma, Cat#P5147–100MG), and 7.5  µg/mL DNase 
I (Sigma‒Aldrich, Cat#D4527–10KU) in cold HBSS. The 
digestion was carried out at 37 °C for 15 min, with gentle 
shaking every 5 min. The reaction was terminated in cold 
MACS buffer containing 0.25% BSA (Sigma‒Aldrich, 
Cat# 10735096001) and 2 mM EDTA, and the sample was 
filtered through a 100  μm cell strainer (Sigma‒Aldrich, 
Cat# CLS431752-50EA), followed by flow cytometric cell 
staining.

Spleen
Fresh spleens were sampled from two anatomical sides, 
the visceral and parietal sides, with 1  g of tissue taken 
from each, and washed twice with cold PBS. The tissues 
were mixed, chopped into small pieces, and transferred 
to a 50 mL tube, where 10 mL of digestion solution was 
added. This mixture contained 20  mg/mL collagenase 
type IV (Gibco, Cat# 17104019), 1 U/mL dispase II 
(Gibco, Cat# 17105041), and 7.5  µg/mL DNase I in 10 
mL of HBSS. The digestion was carried out at 37  °C for 
15  min, with gentle shaking every 5  min. The reaction 
was terminated in cold MACS buffer containing 0.25% 
BSA and 2 mM EDTA, and the sample was sequentially 
filtered through 100  μm and 40  μm cell strainers, fol-
lowed by flow cytometric cell staining.
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Lung
Fresh lungs were sampled from seven different areas: the 
left apex, left medial, left main, right apex, right medial, 
accessory, and right main lobes. Each area provided 0.5 g 
of tissue, which was subsequently washed twice with cold 
HBSS. The tissues were chopped into small pieces and 
transferred to a 50 mL Falcon tube, to which 20 mL of 
digestion solution was added, containing 1  mg/mL col-
lagenase type II, 2.5  mg/mL collagenase type IV, and 
7.5 µg/mL DNase I. The digestion was conducted at 37 °C 
for 30 min, with gentle shaking every 5 min, and termi-
nated in MACS buffer. The sample was diluted in cold 
HBSS and filtered through 100 μm and 40 μm cell strain-
ers, followed by debris removal and flow cytometric cell 
staining.

Kidney
Fresh kidneys were sampled from four areas: the upper 
pole, lower pole, cortex, and medulla. Each area provided 
1 g of tissue, which was subsequently washed twice with 
cold PBS. The tissues were chopped into small pieces and 
transferred to a 50 mL Falcon tube, to which 20 mL of 
digestion solution containing 1 mg/mL collagenase type 
II (Gibco, Cat# 17101015), 2 mg/mL collagenase type IV 
(Gibco, Cat# 17104019), 1 U/mL dispase II (Gibco, Cat# 
17105041), and 7.5 µg/mL DNase I (Sigma‒Aldrich, Cat# 
D4527–10KU) was added. The digestion was conducted 
at 37  °C for 20  min, with gentle shaking every 5  min. 
The reaction was terminated in 20 mL of cold MACS 
buffer containing 0.25% BSA (Sigma‒Aldrich, Cat# 
10735096001) and 2 mM EDTA, and the sample was fil-
tered through 100 μm and 40 μm cell strainers, followed 
by flow cytometric cell staining.

Sample collection for single-nucleus sequencing (snRNA-seq)
The tissues used for single-nucleus sampling included 
visceral adipose (greater omentum fat, GOM), subcuta-
neous fat (SAT), and psoas major muscle (PMM) from 
a Bama pig, which were meticulously dissected while 
adhering to ethical guidelines. The collected tissues 
were washed with cold PBS, immediately frozen in liq-
uid nitrogen, and stored at −80 °C until use. For nuclear 
extraction, the tissues were thawed, cut into small pieces, 
and transferred to homogenization buffer containing 20 
mM Tris pH 8.0, 500 mM sucrose, 0.1% NP-40, 0.2 U/
mL RNase inhibitor, 1% BSA, and 0.1 mM DTT. The tis-
sues were homogenized via a pestle 15 times and filtered 
through a 40 μm strainer. The samples were then centri-
fuged at 4  °C for 10  min at 500×g, and the supernatant 
was carefully discarded. The pellet (nuclei) was resus-
pended in PBS containing 1% BSA and 20 U/µL RNase 
inhibitor and prepared for subsequent snRNA-seq library 
construction.

10× genomics library preparation and sequencing
The samples were subsequently transported on dry 
ice to Novogene Co., Ltd. (Beijing, China). where the 
cDNA libraries were constructed and sequenced. The 
10× Genomics Chromium single-cell 3′ gene expression 
solution was used. Among the seven data samples col-
lected under the designated conditions, four datasets 
were from single-cell sequencing, and the other three 
datasets were from single-nucleus sequencing. All the 
experimental procedures were conducted in accordance 
with the manufacturer’s protocol ( w w w . 1 0 x g e n o m i c s . c o 
m / s u p p o r t / s i n g l e - c e l l - g e n e - e x p r e s s i o n). The quality con-
trol criteria for the preparation of single-cell suspension 
samples were a cell viability > 80%, a cell concentration of 
700–1200 cells/µL, and a cell diameter of 5–30 μm. The 
cell nuclei were extracted from the PMM, SAT, and GOM 
samples at the time of sample preparation (10× Chro-
mium Nuclei Isolation Kit) because of their excessively 
large cell diameters. Qualified cell and cell nuclei suspen-
sions were loaded onto 10× Genomics Single-Cell 3.0 
Chips. During this step, the cells were partitioned into gel 
beads-in-emulsion (GEMs) along with gel beads coated 
with 10× barcode oligonucleotides (including the 14-bp 
index and 10-bp UMIs (unique molecular identifiers)). 
After generating the GEMs, the samples were transferred 
into PCR tubes, and reverse transcription was performed 
via a T100 Thermal Cycler (Bio-Rad). cDNAs with both 
barcodes were amplified, and libraries were constructed 
via a single-cell 3′ Reagent Kit (v3) for each sample. The 
resulting libraries were sequenced on an Illumina Nova-
Seq 6000 System in PE150 mode.

Cell demultiplexing and gene counting
The raw sequencing data were used directly for 
sequence quality control and gene quantification 
via CellRanger (v7.1.0, 10× Genomics, using default 
parameters). The reference genome assembly was down-
loaded from Ensembl in FASTA format (Sscrofa11.1, 
GCA_000003025.6) together with the gene annotation 
GTF file (release 109). The cell metadata, which include 
barcodes.tsv, features.tsv, and gene expression matrix 
(*.mtx) files, were automatically generated via CellRanger. 
The initial data are available in additional files (Supple-
mentary Table 1).

Quality control of cells and genes
We used R software (version 4.2.3,  h t t p s : / / w w w . r - p r o j e 
c t . o r g /     ) and the Seurat R package [26] (version 4.4.0,  h t 
t p  s : /  / s a t  i j  a l a b . o r g / s e u r a t /) for the downstream  a n a l y s e 
s . Initial mitochondrial quantification was conducted, 
and data quality control was performed according to 
the following criteria: genes expressed in < 10 cells were 
excluded; genes with exceedingly low or high overall 
expression (nFeature_RNA < 200, nFeature_RNA > 5000) 

http://www.10xgenomics.com/support/single-cell-gene-expression
http://www.10xgenomics.com/support/single-cell-gene-expression
https://www.r-project.org/
https://www.r-project.org/
https://satijalab.org/seurat/
https://satijalab.org/seurat/
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were filtered out; and in single-nucleus sequencing tis-
sues (SAT, GOM, and PMM), cells with mitochondrial 
gene percentages greater than 10% were eliminated. In 
single-cell tissues (lung, kidney, and spleen), cells with 
mitochondrial gene percentages greater than 30% were 
eliminated. In single-cell tissues (liver), cells with mito-
chondrial gene percentages greater than 50% were elimi-
nated. The R package DoubletFinder [27] (github.com/
chris-mcginnis-ucsf/DoubletFinder) was subsequently 
used to remove doublet cells (DoubletRate = 0.075).

Data normalization and cell clustering
For the refined dataset, gene expression count informa-
tion for each sample was normalized via the `Normal-
izeData` function, followed by feature selection of 3,000 
variable genes via the `FindVariableFeatures` function 
with the “vst” method. The data were then scaled via the 
`ScaleData` function [28]. Principal component analysis 
(PCA) and UMAP projection were executed through the 
`RunPCA` and `RunUMAP` functions, respectively. For 
different tissues, we used either 30 (single-nucleus data-
sets) or 20 (single-cell datasets) principal components as 
determined by the inflection point of the elbow plot for 
each tissue. Cell clusters were identified via the `Find-
Clusters` function and visualized via UMAP. For the 
accurate determination of tissue-specific resolution sizes 
for each dataset, clustree software was employed. Specifi-
cally, the resolutions were set as follows: 0.8 for the liver, 
0.2 for the spleen, 0.2 for the lung, 0.1 for the kidney, 0.5 
for the PMM, 0.5 for the SAT, and 0.2 for the GOM.

Differentially expressed genes and annotation
To identify differentially expressed genes (DEGs) across 
different cell clusters, we employed the FindAllMarkers 
function from the Seurat package, utilizing the Wilcoxon 
rank sum test. This function was configured to detect 
only genes positively marking clusters, with a minimum 
percentage of expressing cells (min.pct) set at 25% and 
a log fold change (logfc.threshold) threshold of 0.25. We 
subsequently filtered these DEGs to include only those 
with an adjusted p value less than 0.05. After all the DEGs 
were identified, the cell types were manually annotated 
by referencing tissue-specific marker genes that have 
been documented in previously published studies [10, 
16, 29–43]. These known marker genes are listed in addi-
tional files (Supplementary Table 2), while the most typi-
cal marker genes used in our annotations are displayed in 
additional files (Supplementary Figures).

Predicting marker genes
On the basis of the differentially expressed genes (DEGs) 
identified, we annotated cell types using known marker 
genes. To uncover more potential marker genes for each 
cell type across the seven tissues, we further refined the 

criteria for gene selection: the gene’s pct1 value must 
exceed 0.7; avg_log2FC must be greater than 0.5; and 
the gene must exhibit pronounced expression specificity, 
using the percentage of the gene’s relative expression as 
one of the standards, such as a gene accounting for more 
than 70% of its total expression in a specific cell type. 
These criteria increase their potential as cell type-specific 
markers.

Data integration
We utilized the ‘merge’ function to integrate the 
postquality control single-cell datasets (liver, spleen, lung, 
and kidney) and single-nucleus datasets (PMM, SAT, and 
GOM) independently. We used Harmony [44], a method 
that relies on multidimensional scaling techniques, for 
the separate integration of single-cell and single-nucleus 
datasets. Harmony eliminates batch effects caused by 
technical and biological variations by harmonizing high-
dimensional similarities between cells. Thus, Harmony 
addresses not only technical factors such as library prep-
aration but also biological variations between cell sub-
populations [45].

Results and discussion
Experimental workflow and initial data quality
We collected samples from seven different tissues and 
organs of Bama pig, including the liver, spleen, lung, 
kidney, psoas major muscle, subcutaneous back fat, and 
omental fat. These tissue samples were immediately 
refrigerated upon collection and underwent standard-
ized cellular dissociation and digestion processes to 
ensure cell viability. The samples were subsequently sent 
to the laboratory for single-cell library construction and 
high-throughput sequencing. Using the 10x Genomics 
platform and CellRanger software for data processing, 
we achieved detailed cell typing and annotation for both 
whole and individual tissues. Batch effects were corrected 
via the Harmony algorithm during integrated analysis, 
ensuring data consistency and reliability (Fig.  1a). The 
proportion of reads uniquely mapped to the genome was 
above 58%, with the average number of reads per cell 
ranging from 56,339 to 184,315. Analysis via CellRanger 
revealed that the median gene expression per cell ranged 
from 1,000 to 2,696. The average sequencing satura-
tion for the Bama pig samples was 77.10%, demonstrat-
ing high data utility. Furthermore, CellRanger analysis 
indicated that the number of viable cells typically met or 
exceeded the anticipated capture of 3,000 cells (Fig. 1b). 
The detailed raw data, such as the Q30 values for UMI 
sequences across all seven tissues exceeding 90%, are 
reported in additional files (Supplementary Table 1). 
Overall, these data highlight the high-quality sequenc-
ing depth and excellent coverage of the Bama pig refer-
ence genome, providing a solid basis for further analyses. 
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The raw single-nucleus sequencing data (SAT, GOM, 
and PMM) represent RNA found only within cell nuclei. 
RNA from mitochondrial (percent.mt) genes is gener-
ally absent in nucleus-only sequencing data; hence, the 
percentage of mt is typically lower in snRNA-seq data. 
Moreover, since single-nucleus sequencing captures only 
nascent RNA in nuclei, the quantity of RNA (nCount_
RNA) is also expected to be lower than that of scRNA-
seq methods, with correspondingly lower numbers of 
genes and reads (nFeature_RNA) per cell sequenced 
(Fig. 1c). 

Tissue-specific cell type classification
To independently verify the reliability of each dataset 
and identify tissue-specific cell types or subtypes, we 
conducted separate analyses through cell annotation 
and classification for each dataset. After CellRanger pro-
cessed the raw data output, we used Seurat to construct 
single-cell matrices and then performed quality control 
on each dataset. As previously mentioned, the percent-
age of mitochondrial genes is used as a proxy for cell 
death, but mitochondrial gene RNA is generally absent in 
nuclear data; therefore, the percent.mt is lower in single-
nucleus sequencing data. Notably, Hepatocytes may have 
very high mitochondrial content [46]; hence, a threshold 

Fig. 1 Single-cell RNA sequencing workflow and data overview for seven bama pig tissues. a Schematic representation of the experimental workflow. 
Tissue samples from seven different parts of the Bama pig were processed for scRNA-seq and snRNA-seq, followed by high-throughput sequencing and 
downstream bioinformatics analysis. b Statistics of single-cell sequencing data for different tissues. Estimated Number of Cells: indicates the number of vi-
able cells; Mean Reads per Cell: represents the average read coverage per cell; Transcriptome Mapping Rate: denotes the proportion of reads mapped ex-
clusively to the genome; Sequencing Saturation: indicates the complexity index of the sequencing library; Median UMI Counts per Cell: median number 
of unique molecular identifiers per cell; Median Genes per Cell: median number of genes expressed per cell. c Variations in mitochondrial and ribosomal 
gene expression across tissues. nCount_RNA, nFeature_RNA, and percent.mt correspond to each of the seven samples. In the context of the snRNA-seq 
libraries, mitochondrial expression ratios in PMM, GOM, and SAT are lower than in the single-cell tissues (kidney, liver, lung, spleen)
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of 50% was set (liver, percent.mt < 50) to optimally pre-
serve hepatocytes and remove dead or dying cells. In sin-
gle-cell microfluidics processes, droplets containing two 
or more cells can occur, which are then mistakenly iden-
tified as single cells. To further remove cells with abnor-
mal gene expression, we employed DoubletFinder [27], 
eliminating doublets. Finally, each cluster’s identity was 
assigned on the basis of established cell-specific marker 
gene expression. As expected, each tissue exhibited spe-
cific cell types; subcutaneous back fat (SAT) and omental 
fat (GOM) uniquely featured “fibro-/adipogenic progeni-
tors” and “adipocytes”. The psoas major muscle (PMM) 
showed skeletal muscle fiber cells, “I myofiber”, “II 
myofiber 2B”, and “II myofiber 2X”. The spleen contains 
“dendritic cells”, which are crucial for initiating immune 
responses, particularly in antigen presentation [47]. The 
lung features “alveolar type 1 cells”, which cover the sur-
faces of the alveoli for gas exchange, and “alveolar type 2 
cells”, which are responsible for secreting surfactants to 
prevent alveolar collapse [48]. The kidney displays “proxi-
mal tubule cells”, which are crucial for filtering waste 
from the blood and absorbing water and nutrients [49]. 
Liver tissue includes “Hepatocytes”, which are associated 
with the metabolism of proteins, carbohydrates, and fats 
[50], and specialized immune cells in the liver, “Kupffer 
cells” (Fig. 2). 

Integrative analysis results of the ScRNA-seq data
After individually assessing and confirming the high 
quality of each tissue dataset, which featured a diverse 
array of cell types and tissue-specific cells, we found that 
integrative analysis was feasible. Batch effects between 
different datasets can compromise the authenticity of 
comparisons, even when the same sequencing technolo-
gies are used. To standardize comparisons, we merged 
the postquality control scRNA-seq samples from the 
liver, spleen, lung, and kidney and conducted dimen-
sionality reduction clustering (resolution = 0.8). This 
approach effectively mitigated batch effects, yielding a 
consolidated dataset of 39,406 cells and 24,686 genes 
for comprehensive annotation and comparison. Typi-
cally, cells with more total RNA molecules also exhibit 
more diverse gene detection. The correlation coefficient 
between nCount_RNA (total RNA molecules in cells) 
and nFeature_RNA (number of distinct genes detected 
per cell) increased from 0.83 to 0.9 after quality control 
(Fig.  3a), indicating a significant increase in the quality 
of the subsequent datasets. After correction for batch 
effects, the integration of similar cell types across dif-
ferent tissues was significantly enhanced (Fig.  3b). In 
this integrated analysis, using a curated set of cell-spe-
cific marker genes (Fig.  3e), we annotated 12 cell types 
from 33 cell clusters (Fig. 3c). In addition to identifying 
most cell types previously detected in individual analy-
ses (Fig. 3d), we also discovered four established marker 
genes common across tissues, namely, CRTAM, GNLY, 

Fig. 2 UMAP plots of the seven datasets after individual clustering analysis
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IL7R, and KLRB, for identifying T cells in all four tis-
sues. In terms of cell abundance, the spleen, which is 
predominantly composed of immune cells, represented 
96.74%, whereas the kidney was characterized mainly by 
tubule cells. The liver and lung presented a more complex 
assortment of cell types. 

Integrative analysis results of the SnRNA-seq data
Similarly, to compare snRNA-seq data under the 
same standard, snRNA-seq samples (SAT, GOM, and 
PMM) were merged and subjected to dimensional-
ity reduction clustering (resolution = 0.4), resulting in 

a total of 20,090 nuclei and 22,991 genes after batch 
effect removal. The correlation coefficient between 
nCount_RNA (total RNA molecules in nuclei) and 
nFeature_RNA (number of distinct genes detected 
per nucleus) increased from 0.9 to 0.94 after qual-
ity control (Fig.  4a). Compared with the scRNA-seq 
dataset, the snRNA-seq dataset presented more pro-
nounced batch effects (Fig.  4b), and the cells became 
more distinctly separated, with similar cell types clus-
tering more closely after batch effect correction. In 
the snRNA-seq dataset, 12 cell types were annotated 
from 21 cell clusters via a curated set of cell-specific 

Fig. 3 Technical validation of integrated single-cell tissue datasets (kidney, liver, lung, and spleen). a Scatter plots showing the correlation between 
nCount_RNA (x-axis) and nFeature_RNA (y-axis). The correlation coefficient before integration (Rawdata) is 0.83, which increases to 0.9 after low-quality 
cells and doublets are removed. b Comparison of UMAP plots illustrating batch effect correction before and after integration across the four single-cell 
datasets under the same standard. c Annotation UMAP plot using established marker genes for the datasets. d Bar chart comparing the abundance of 
cell types across the four integrated single-cell tissue datasets. e Bubble chart of established marker genes for 12 cell types in the integrated single-cell 
data. Larger and darker bubbles indicate stronger specificity
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marker genes (Fig.  4e, c). In terms of cell abundance, 
each tissue presented unique cell types with high cell 
type abundance (Fig. 4d). Overall, the data integration 
highlights the reliability of the data, not only providing 
a comparative abundance of cell types under a unified 
standard but also serving as a reference for future data 
integration and other research endeavors. 

Potential marker genes
In single-cell transcriptomics, high-quality data are often 
closely associated with gene quality. To confirm the high 
quality of our data, we used a verification procedure that 

involved the careful selection of 0–5 potential marker 
genes for each single-cell type to assess their predictive 
power. Using the filtering criteria in our methodology, we 
found that the genes summarized in our I additional files.

(Supplementary Table 3) clearly exhibited strong 
marker gene representation. Remarkably, our results 
show robust concordance between the functions of the 
predicted annotated genes and the original annotations 
of the cell types, confirming a high level of correspon-
dence. Together, the results highlight the effectiveness 
of these genes as marker genes, which aligns perfectly 
with our expectations regardless of their specificity or 

Fig. 4 Technical validation of integrated single-nuclei datasets (SAT, GOM, and PMM) a Correlations between nCount_RNA and nFeature_RNA before 
(0.9) and after (0.94) quality control. b UMAP plots comparing batch effects pre- and postcorrection across datasets under the same standard. c UMAP 
annotations using established marker genes. d Bar chart of cell type proportions in integrated snRNA-seq datasets. e Bubble chart showing marker gene 
specificity by cell type, with size and color intensity indicating specificity
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expression levels. In summary, within a rigorous qual-
ity control framework, including meticulous batch 
effect removal, the final set of high-quality genes and 
cells provides additional potential marker genes for a 
thorough exploration of distinct cell types in miniature 
pig (Bama pig), offering resources for studying the het-
erogeneity between different tissues or organs at the 
transcriptomic level.

One limitation of this study is the lack of replicates. 
Although we have collected rich single-cell transcrip-
tomic data from seven different tissues and organs, 
and ensured high data quality through strict quality 
control steps, the absence of replicates means that our 
results may be influenced by individual variations or 
sample processing inconsistencies. Additionally, the 
study is based solely on single-cell transcriptomic data 
from Bama pigs, so it would be beneficial to integrate 
and compare data from other similar or different pig 
breeds to further validate and expand the identified 
marker genes and cell types. Furthermore, while we 
have identified several potential marker genes, these 
still require experimental validation to confirm their 
biological significance across different tissues and cell 
types. Therefore, future studies should consider incor-
porating replicates, integrating data from different pig 
breeds or experimental conditions to enhance the gen-
eralizability and robustness of the findings, and fur-
ther validating the potential marker genes.

Conclusions
In the present study, we gathered data from seven dis-
tinct tissues and organs of a Bama pig. This high-quality 
dataset comprises 72,710 cells and serves as a valuable 
resource that offers a comprehensive single-cell refer-
ence for miniature pigs. This resource will not only aid in 
exploring the broad heterogeneity across different pig tis-
sues and organs but also become a valuable resource and 
reference for identifying potential biomarkers unique to 
Bama pig.
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