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Abstract

Objectives Antiaris toxicaria is a tall tree belonging to the Moraceae family, known for its medicinal value. Its latex
contains various cardiac glycosides, which hold significant research and potential application value. However, the lack
of genomic resources for A. toxicaria currently hinders molecular genetic studies on its medicinal components. For

its effective conservation and elucidation of the distinctive genetic traits of and medical components, we present its
chromosome-level genome assembly.

Data description Here, we assembled two haplotypes of A. toxicaria, including a 671.73-Mb HapA subgenome
containing 27,213 genes and a 666.41-Mb HapB subgenome containing 28,840 genes. Their contig N50 sizes were
90.18 and 90.29 Mb, respectively. The transposable elements represented 61.15% and 64.13% of the total assembled
genome in HapA and HapB subgenome, respectively. A total of 27,213 and 28,840 genes were predicted in the two
haplotypes. Hopefully, this chromosome-level genome of A. toxicaria will provide a valuable resource to enhance
understanding of the biosynthesis of medicinal compounds.
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Objective

Antiaris is a genus in the Moraceae, all species are large
trees with tall and straight trunk and plank-like roots.
There are approximately seven species and three variet-
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Table 1 Overview of data files/data sets
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Label Name of data file/data set File types (file Data repository and identifier (DOI or accession
extension) number)
Datafile 1 Summary of library sequencing data Word file (docx) Figshare, https://doi.org/10.6084/m9.figshare.28328342 [13]
Data file 2 K-mer-based estimation of genome characters  Image file (jpg) Figshare, https://doi.org/10.6084/m9.figshare.28328369 [14]
Data file 3 Hi-C interactive heatmap Image file (jpg) Figshare, https://doi.org/10.6084/m9.figshare.28328372 [15]
Data file 4 Statistics of genome assembly and annotation ~ Word file (docx) Figshare, https://doi.org/10.6084/m9.figshare.28328378 [16]
Data file 5 Summary of gene functional annotation Word file (.docx) Figshare, https://doi.org/10.6084/m9.figshare.28328387 [17]
Data file 6 Gene function on Haplotype A TXT file (txt) Figshare, https://doi.org/10.6084/m9.figshare.28328396 [18]
Data file 7 Gene function on Haplotype B TXT file (txt) Figshare, https://doi.org/10.6084/m9.figshare.28328405 [19]
Data file 8 Statistical results of the repetitive sequences Word file (docx) Figshare, https://doi.org/10.6084/m9.figshare.28328408 [20]
Datafile 9 Summary of noncoding RNA genes Word file (docx) Figshare, https://doi.org/10.6084/m9.figshare.28328414 [21]
Data set 1 lllumina survey data of A. toxicaria Fastq file (fastq) NCBI Sequence Read Archive, https://identifiers.org/ncbi/in
sdc.sra:SRR32205349
Data set 2 PacBio HiFi reads of A. toxicaria Bam file (bam) NCBI Sequence Read Archive, https://identifiers.org/ncbi/in
sdc.sra:SRR32203223
Data set 3 ONT Ultra-long reads of A. toxicaria Fastq file (fastq) NCBI Sequence Read Archive, https://identifiers.org/ncbi/in
sdc.sra:SRR32203292
Data set 4 Hi-C reads of A. toxicaria Fastq file (fastq) NCBI Sequence Read Archive, https://identifiers.org/ncbi/in
sdc.sra:SRR32205131
Data set 5 Genome assembly data for HapA Fasta file (fasta) Figshare, https://doi.org/10.6084/m9.figshare.28328498 [22]
Data set 6 Genome assembly data for HapB Fasta file (fasta) Figshare, https://doi.org/10.6084/m9.figshare.28328528 [23]
Data set 7 Transcriptome data of Antiaris toxicaria Fastq file (fastq) NCBI Sequence Read Archive, https://identifiers.org/ncbi/in
sdc.sra:SRR32202871
Data set 8 Gene prediction on HapA GFF3 file (gff3) Figshare, https://doi.org/10.6084/m9.figshare.28328429 [24]
Data set 9 Gene prediction on HapB GFF3 file (gff3) Figshare, https://doi.org/10.6084/m9.figshare.28328432 [25]
Data set 10 Transposable elements annotation on HapA GFF3 file (gff3) Figshare, https://doi.org/10.6084/m9.figshare.28328444 [26]
Dataset 11 Transposable elements annotation on HapB GFF3file (gff3) Figshare, https://doi.org/10.6084/m9.figshare.28328450 [27]
Data set 12 Noncoding RNA prediction on HapA GFF3 file (gff3) Figshare, https://doi.org/10.6084/m9.figshare.28328456 [28]
Data set 13 Noncoding RNA prediction on HapB GFF3 file (gff3) Figshare, https://doi.org/10.6084/m9.figshare.28328459 [29]

Additionally, HPLC screening of A. toxicaria extracts
revealed the presence of gallic acid, catechins, chloro-
genic acid, caffeic acid, ellagic acid, epigallocatechin,
rutin, isoquercitrin, quercitrin, quercetin and kaempferol
[11]. Therefore, A. toxicaria holds significant research
and commercial value. However, our understanding of
the biosynthesis and regulatory mechanisms of second-
ary metabolites in A. toxicaria is limited, and further
research is needed on the candidate genes and transcrip-
tion factors involved in cardiac glycoside biosynthesis
pathways.

In this study, we successfully assembled the A. foxi-
caria chromosome-level genome using high-fidelity
(HiFi) reads and high-throughput chromosome confor-
mation capture (Hi-C) sequencing technologies. This
study reports the high-quality genome of A. toxicaria.
We believe that this research will provide important
resources for studying the biosynthetic mechanisms of
this species.

Data description

A. toxicaria samples were obtained from the South
China Botanical Garden (23.18°N, 113.36°E), Guang-
zhou, China. Fresh leaves of A. toxicaria were collected

for PacBio HiFi, ONT ultralong, and Hi-C sequencing.
A PCR-free SMRTBell library was constructed using
high-quality purified long reading DNA for PacBio HiFi
sequencing. The ONT PromethION sequencer was used
to generate ONT ultralong reads. Hi-C libraries were
constructed and sequenced using BGI platform. Stems,
leaves, and seeds of A. toxicaria were frozen in liquid
nitrogen and stored at — 80 °C for transcriptome analyses.
All Illumina sequencing data were filtered to obtain clean
data using the fastp v0.23.1 [12] for subsequent analysis.
A total of 128.34 Gb (~191.06 x coverage) paired-end
Illumina reads (Table 1; Data set 1), 32.7 Gb (~48.68 x
coverage) PacBio HiFi long reads (Table 1; Data set 2),
16.71 Gb ONT Ultra-long reads (~24.87 x coverage)
(Table 1; Data set 3), and Hi-C reads (~ 126.14xcoverage)
(Table 1; Data set 4) were generated for the genome sur-
vey, and assembly (Table 1; Data file 1).

Before genome assembly, we used the GCE (Genomic
Charactor Estimator) v 1.0.2 [30] to assess the genome
size based on Illumina short reads. The genome size of A.
toxicaria was estimated to be approximately 729.84 Mb
based on the assessment results when using kmer
length of 17 bp, showing a high degree of repeat content
(70.62%) and heterozygosity (0.57%) (Table 1; Data file 2).
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The PacBio HiFi, ONT Ultra-long, and Hi-C data were
assembled using Hifiasm [31] with the default param-
eters. Then, the Hi-C data was aligned to the HapA and
HapB subgenomes, respectively, and classified as valid
or invalid interaction pairs using the Juicer pipeline [32]
and YaHS v1.2 [33]. Meanwhile, misassembled contigs
were detected, corrected manually and oriented to chro-
mosomes through Juicebox v1.11.08 [32]. The corrected
ONT and PacBio HiFi reads were used to replace the
gap region using TGS-GapCloser v1.2.1 [34], and then
obtained the haplotype-resolved gap-free genome of
A. toxicaria. Finally, the A. toxicaria genome was ulti-
mately phased into two haplotypes, comprising a total of
26 pseudochromosomes, with HapA spanning approxi-
mately 671.73 Mb and featuring a contig N50 of 90.18 Mb
(Table 1; Data files 3—4; Data set 5). Similarly, HapB
spans around 666.41 Mb with a contig N50 of 90.29 Mb
(Table 1; Data files 3—4; Data set 6). Moreover, the GC
content of HapA was 35.65%, while that of HapB was
35.61% (Table 1; Data file 4).

The genome completeness was assessed by search-
ing the gene content of the embryophyta_odb10 data-
base (1,614 expected genes from the embryophyta) with
BUSCO v4.1.2 [35], showed that, the proportions of
complete BUSCOs (including single-copy and multi-
copy) of these two haplotypes were 98.5% and 98.6%,
respectively (Table 1; Data file 4). The quality of repeti-
tive genomic regions was assessed using the LAI v3.2
program [36], which exhibited LAI values of 16.4 (HapA)
and 14.72 (HapB) (Table 1; Data file 4). Then the per-base
consensus accuracy (QV) was estimated with Merqury
v1.365 [37] using PacBio HiFi long reads, resulting in
QV values of 47.13 and 47.1 (Table 1; Data file 4). Short-
reads and long-reads were mapped to the genome with
BWA v0.7.13-r1126 [38] and Minimap2 v2.21 [39], and
we found that the genome coverage of sequencing data
exceeded 99% (Table 1; Data file 4).

Protein-coding genes was predicted using homology-
based, transcriptome-based, and ab initio prediction
methods. First, we used homologies as protein-based
evidence for predicting gene sets using GeneWise v2.4.1
[40]. Transcriptome data were mapped using HISAT2
v2.1.0 [41] (Table 1; Data set 7). ab initio prediction
using packages AUGUSTUS v3.4.0 [42], trained by the
transcriptome data. To generate a comprehensive pro-
tein-coding gene set, we used the GETA v2.6.1 (Genome-
wide Electronic Tool for Annotation) pipeline (https:/
/github.com/chenlianfu/geta) to integrate annotations
from all homology-based, transcriptome-based, and ab
initio predictions. Then Functional annotation of the
protein-coding genes was carried out by blast searches
against databases, including the NCBI nr [43], Swiss-
Port [44], KOG [45], eggNOG [46], Pfam [47], GO [48],
and KEGG [49]. In total, we obtained 27,213 and 28,840
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protein-coding genes of the HapA and HapB subge-
nomes, respectively (Table 1; Data file 4; Data sets 8-9).
Moreover, 26,906 (98.87%) genes of the HapA subgenome
and 26,360 (98.8%) genes of the HapB subgenome were
supported by multiple functional databases (Table 1;
Data files 5-7).

To identify Transposable elements (TEs), we used the
pipeline of Extensive de-novo TE Annotator (EDTA)
v2.1.0 [50], which combines both structural-based and
homology-based predictions. For noncoding RNA pre-
diction, the tRNA genes were predicted using tRNAscan-
SE v2.0.6 [51]. Others, including miRNA, rRNA and
snRNA genes, were detected by comparison with the
Rfam database [52] using CMsearch v1.1.3 [53] with the
default parameters. A total of 427.39 Mb of TEs were
identified, accounting for 64.13% of the HapB subge-
nome, which was higher than the HapA subgenome
(Table 1; Data file 8; Data sets 10—11). In addition, the
long terminal repeat retrotransposons (LTRs) were the
predominant repeats covering 55.63% (370.77 Mb) of
the HapB subgenome, and the Copia and Gypsy-type
LTRs were the largest LTR subfamilies, accounting for
15.89% (105.89 Mb) and 39.10% (260.58 Mb), respectively
(Table 1; Data file 8; Data sets 10—11). Moreover, 456
tRNAs and 111 miRNAs were identified in the A. foxi-
caria subgenome (Table 1; Data file 9; Data sets 12—13).
1,637 and 1,182 rRNAs were identified in the HapA and
HapB subgenomes, respectively (Table 1; Data file 9; Data
sets 12—13).

Limitations

Genome and transcriptome data are available in this
study, but there is a lack of proteome and metabolome
data from different tissues, as well as multi-omics corre-
lation analysis.
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HiFi High fidelity

ONT Oxford Nanopore Technology

Hi-C High-throughput chromosome conformation capture
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KEGG Kyoto Encyclopedia of Genes and Genomes
KOG Eukaryotic Orthologous Groups
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LTR Long-Terminal Repeat

TE Transposon Eleme

NCBI National Center for Biotechnology Information
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