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been widely used in industry and agriculture because of 
its unique ability in plant growth promotion, biocontrol 
and biodegradation [4]. P. taichungensis was firstly iso-
lated and identified from a sample of soil from Taichung, 
a city in Taiwan of China [5]. It was subsequently isolated 
from the endophytic bacteria of Arabidopsis thaliana 
and found to have significant growth-promoting effects 
[6]. P. taichungensis strain NC1 displaying high arsenic 
resistance was isolated and identified from the Zijin gold-
copper mine in Fujian, mainland of China [7]. This sug-
gests that P. taichungensis, like most Paenibacillus, has 
strong application value in agricultural and industrial 
fields. In agriculture, arsenic resistance could be utilized 
to develop bioinoculants that enable plants to thrive in 

Objective
The genus Paenibacillus was designated in 1993, com-
prising 11 species that were originally classified under 
the genus Bacillus [1, 2]. Novel species of this genus 
have been rapidly discovered, and currently, more than 
150 named species have been identified. Members of 
this genus are facultative anaerobic, endospore-forming, 
motile, rod-shaped and gram-positive bacteria [3]. It has 
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Abstract
Objectives  The genus Paenibacillus encompasses a diverse group of Gram-positive bacteria with significant 
biotechnological potential. However, the research data and application cases of Paenibacillus taichungensis were still 
poorly understood. In this study, we isolated a P. taichungensis strain BB507, which demonstrated antibacterial effect 
on Ralstonia solanacearum species complex, and provided data and analysis of its complete genome.

Data description  Strain BB507 was isolated from a pine rhizosphere in Meizhou city, Guangdong province of 
China, and showed antibacterial activity against Ralstonia solanacearum species complex. Complete genome was 
sequenced using Illumina NovaSeq (second-generation) and Oxford Nanopore (third-generation) platforms. The 
genome of BB507 comprised of a 6,974,531 bp circular chromosome and a 352,197 bp circular plasmid, encoding a 
total of 6,649 gene with an average gene length of 950 bp, 103 transfer RNAs, 2 sRNAs, and 36 rRNAs. Three candidate 
CRISPRs, 6 genomic islands and 14 prophages were predicted. The bacterial orthologous average nucleotide identity 
(OAT) and the type genome server (TYGS) analysis highlighted the strain BB507 was clustered into a subgroup with P. 
taichungensis. antiSMASH v7.0 predicted the presence of 10 secondary metabolite gene clusters in the genome. These 
findings will serve as a useful resource for further research in industrial and agricultural biotechnology.
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arsenic-contaminated soils by reducing arsenic uptake 
and enhancing overall plant health. In industrial appli-
cations, such as mining and wastewater treatment, this 
resilience to arsenic toxicity could be harnessed to miti-
gate environmental pollution and promote sustainable 
practices. There were no complete-level genome data of 
P. taichungensis, only nine contig/scaffold-level data were 
included in the NCBI database.

Bacterial wilt, attributed to Ralstonia solanacearum 
species complex (RSSC) infection, has caused destruc-
tive impacts and colossal economic losses on agricultural 
production [8, 9]. Chemical control, which was ubiqui-
tously used, cannot manage this disease as expected, so 
biocontrol has been followed with interest to date. We 
found a P. taichungensiss strain BB507 that had a potent 
antagonistic activity against RSSC, and the genomic 
sequencing and analysis revealed biocontrol mechanisms 
might be involved in the strain BB507.

Data description
Strain BB507 was isolated from the rhizosphere of a pine 
tree in Meizhou city, Guangdong province, China, and 
demonstrated potent antibacterial activity against RSSC 
using a plate confrontation assay, as previously described 
in our published work [10]. BB507 was sequenced using 
the combination of Oxford Nanopore PromethION and 
Illumina NovaSeq PE150 platform at Novogene Bioin-
formatics Technology Co., Ltd in Beijing, China. Ini-
tially, library preparation was performed according to 
Oxford Nanopore Technologies (ONT, Oxford, United 
Kingdom) protocol for multiplexing samples (1D native 
barcoding genomic DNA with EXP-NBD103 and SQK-
LSK108). Genome DNA was sonicated to a fragment size 
of 350 bp, followed by A-tailing, end-polishing, and liga-
tion with full-length adaptors for Illumina sequencing. 

Polymerase Chain Reaction (PCR) products were puri-
fied using the AMPure XP system, and library size dis-
tribution was analyzed by Agilent2100 Bioanalyzer. 
Quantification was performed using real-time PCR. A 
total of 1,044  Mb Nanopore clean data were generated 
with an estimated 145×average depth of sequencing cov-
erage. Post-quality control, paired reads were assembled 
into a complete genome using SMRT Link v5.1.0, with 
further refinement using Illumina data and Pilon. The 
complete genome of BB507 was 7.33 Mb in total with GC 
content of 45.84%, which comprised a 6.97  Mb circular 
chromosome and a 0.35  Mb circular plasmid (Table  1, 
Data file 1). CheckM2 analysis revealed that the assem-
bled genome of BB507 was complete, with a genome 
completeness of 99.85% and a contamination level of 
1.15%. Gene prediction identified 6,649 genes in BB507 
using GeneMarkS v4.17 [11]. Genomic component analy-
sis of strain BB507 revealed the presence of 103 transfer 
RNAs (tRNAs), identified using tRNAscan-SE v1.3.1 [12], 
and 36 ribosomal RNAs (rRNAs) (5 S, 16 S, 23 S), iden-
tified using rRNAmmer v1.2 [13]. Additionally, 3 Clus-
tered Regularly Interspaced Short Palindromic Repeats 
(CRISPRs) were detected using CRISPRdigger v1.0 [14], 
6 genomic islands were identified using IslandPath-
DIMOB v0.2 [15], and 14 prophages were identified 
using phiSpy v2.3 [16]. The general features of the BB507 
genome were listed in Data file 2 (Table 1). The complete 
genome sequence of BB507 has been deposited in Gen-
Bank dataset under the accession number CP175536 
(Table 1, Dataset 8) and CP175537 (Table 1, Dataset 9).

Functional annotation revealed that 4,296 genes were 
assigned into 47 Gene Ontology (GO) categories [25], 
6016 genes were enriched in 106 Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways [26], and 4,483 
genes were classified into 23 Clusters of Orthologous 

Table 1  Overview of data files/data sets
Label Name of data file/data set File types

(file extension)
Data repository and identifier (DOI or accession 
number)

Data file 1 The circular maps of the BB507 genomes chromo-
some and plasmid

Figure file (.tif ) Figshare (​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​6​0​8​4​​/​m​​9​.​f​​i​g​s​​h​a​r​e​​.​2​​8​0​1​3​5​0​7) [17]

Data file 2 Genomic features of BB507 Word file (.docx) Figshare (​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​6​0​8​4​​/​m​​9​.​f​​i​g​s​​h​a​r​e​​.​2​​8​2​8​1​9​6​5) [18]
Data file 3 Summary of gene annotation of the strain BB507 Word file (.docx) Figshare (​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​6​0​8​4​​/​m​​9​.​f​​i​g​s​​h​a​r​e​​.​2​​8​2​8​1​9​7​1) [19]
Data file 4 Pairwise average nucleotide identity (ANI) compari-

sons of whole genomes of BB507 and other strains
Figure file (.tif ) Figshare (​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​6​0​8​4​​/​m​​9​.​f​​i​g​s​​h​a​r​e​​.​2​​8​2​8​1​9​7​4) [20]

Data file 5 Genome-Blast Distance Phylogeny (GBDP) tree 
inferred with FastME 2.1.6.1

Figure file (.tif ) Figshare (​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​6​0​8​4​​/​m​​9​.​f​​i​g​s​​h​a​r​e​​.​2​​8​2​8​3​0​9​9) [21]

Data file 6 Pairwise comparisons of strain BB507 vs. type strain 
genomes

Table file (.xlsx) Figshare (​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​6​0​8​4​​/​m​​9​.​f​​i​g​s​​h​a​r​e​​.​2​​8​2​8​3​1​1​4) [22]

Data file 7 Comparison of predicted and known secondary 
metabolites of BB507

Word file (.docx) Figshare (​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​6​0​8​4​​/​m​​9​.​f​​i​g​s​​h​a​r​e​​.​2​​8​0​1​3​5​0​7) [17]

Dataset 8 Genome assembly of Paenibacillus taichungensis 
strain BB507 Chromosome

Fasta files (.fasta) NCBI GenBank (​h​t​t​p​​:​/​/​​i​d​e​n​​t​i​​f​i​e​​r​s​.​​o​r​g​/​​n​u​​c​l​e​​o​t​i​​d​e​:​C​​P​1​​7​5​5​3​6​
.​1) [23]

Dataset 9 Genome assembly of Paenibacillus taichungensis 
strain BB507 plasmid

Fasta files (.fasta) NCBI GenBank (​h​t​t​p​:​​​/​​/​i​d​e​n​t​i​​f​i​e​​r​​s​.​​o​r​​g​​/​N​​u​c​l​​e​o​t​​i​​d​e​​:​C​​P​1​7​5​5​​3​7​
.​1) [24]

https://doi.org/10.6084/m9.figshare.28013507
https://doi.org/10.6084/m9.figshare.28281965
https://doi.org/10.6084/m9.figshare.28281971
https://doi.org/10.6084/m9.figshare.28281974
https://doi.org/10.6084/m9.figshare.28283099
https://doi.org/10.6084/m9.figshare.28283114
https://doi.org/10.6084/m9.figshare.28013507
http://identifiers.org/nucleotide:CP175536.1
http://identifiers.org/nucleotide:CP175536.1
http://identifiers.org/Nucleotide:CP175537.1
http://identifiers.org/Nucleotide:CP175537.1
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Groups (COG) categories [27]. Annotation identified 244 
putative virulence factors, 498 pathogen–host interaction 
genes, 604 transport proteins, 484 carbohydrate-active 
enzymes, and 2 antibiotic resistance proteins using data-
bases such as Virulence Factors of Pathogenic Bacteria 
(VFDB) [28], Pathogen Host Interactions Database (PHI) 
[29], Transporter Classification Database (TCDB) [30], 
Carbohydrate-Active enZYmes Database (CAZyme) [31], 
and Antibiotic Resistance Genes Database (ARDB) [32], 
respectively (Table 1, Data file 3).

Orthologous Average Nucleotide Identity Tool (OAT) 
[33] analysis revealed that the eight P. taichungensis 
strains shared the indexes of Average Nucleotide Iden-
tity (ANI) ranging from 90.24 to 100%, and 67.06–69.25% 
ANI indexes with strains of Paenibacillus graminis and 
Paenibacillus chitinolyticus. Notably, the highest ANI 
index of 99.02% was found between strain BB507 and 
strain NC1, and they were also clustered together on 
the phylogenetic branch (Table  1, Data file 4). In addi-
tion, the type genome server (TYGS) [34]was used as a 
means of confirming the previous results shown by both 
the multigene phylogenetic approach and the ANI calcu-
lations. The TYGS results indicated that BB507 formed 
a monophyletic relationship with closely related P. tai-
chungensis (Table  1, Data file 5). The digital DNA-DNA 
hybridization (dDDH) values with both P. taichungensis 
strain were 66.7–93.2% (Table 1, Data file 6). BB507 had 
a dDDH of 93.2% with G + C% content difference of 0.34 
with P. taichungensis strain NC1. The ANI indexes < 95% 
and dDDH < 75% observed in some strains within the 
clade of P. taichungensis were due to P. taichungensis 
strain DB-4 (ANI index = 92.94%, dDDH = 69.4%) and 
VTTE13328 (ANI index = 90.28%, dDDH = 66.7%). These 
discrepancies suggested that the taxonomic status of 
these two strains might be deviated. Therefore, the taxo-
nomic definition of P. taichungensis might be limited by 
the current sample size. However, the above results still 
indicated that BB507 belonged to the P. taichungensis.

The secondary metabolite gene clusters of BB507 were 
predicted using antiSMASH v7.0 [35], identifying a total 
of ten potential gene clusters, nine of which were chro-
mosomal and one plasmid-borne. Seven of these clusters 
showed similarity to known biosynthetic gene clusters of 
Paeninodin, Staphyloferrin B, Corynecin, Bacillopaline, 
Carotenoid, Bacillibactin, and Aurantinin, with similari-
ties ranging from 10 to 100% (Table 1, Data file 7). Addi-
tionally, three gene clusters of unknown function were 
identified, suggesting the presence of novel secondary 
metabolites.

Limitations
While this study provides valuable insights into the 
genomic features and biocontrol potential of P. taic-
hungensis strain BB507, several limitations should be 

considered. First, the functional roles of the predicted 
secondary metabolite gene clusters require further exper-
imental validation. Although antiSMASH v7.0 predicted 
ten secondary metabolite gene clusters, including both 
known biosynthetic pathways and several novel ones, 
the actual production and biological activity of these 
metabolites have not been confirmed. Additionally, the 
taxonomic analysis relies on the available genome data, 
which may have limitations due to the current sample 
size and the presence of closely related strains with simi-
lar ANI and dDDH values. The phylogenetic relation-
ships within the P. taichungensis, particularly concerning 
strains with deviating taxonomic status (e.g., strains DB-4 
and VTTE13328), highlight the need for further genomic 
and phenotypic investigations to refine the classification.
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