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Abstract

Objectives Water hyacinth (Eichhornia crassipes) is one of the most notorious invasive aquatic plants in the world and
is known to cause significant ecological and socioeconomic impacts. Here, we reported a high-quality chromosome-
level genome for water hyacinth, which will be a valuable reference for future investigations of its invasion.

Data description A chromosome-level genome for water hyacinth was constructed by combing MGI short-reads
sequencing, PacBio HiFi (High-fidelity) sequencing, and Hi-C sequencing, which resulted in ca. 1132.2 Mb in size

the contig and scaffold N50 length of 18.76 Mb and 69.84 Mb, respectively. A total of 1024.36 Mb (90.47%) of the
assembled sequences were anchored to 16 pseudochromosomes, dividing into subgenome A (468.72 Mb in size) and
subgenome B (555.64 Mb in size). A total of 57,683 protein-coding genes were predicted, including 25,445 protein-
coding genes for subgenome A and 27,992 protein-coding genes for subgenome B. Furthermore, the LAl and QV
scores of the water hyacinth genome were 12.32 and 48.91, respectively.
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Objective

The genus Eichhornia (Pontederiaceae) has seven spe-
cies, all of which are potentially invasive [1]. However,
the Eichhornia species vary in their global distribution
and invasiveness. E. crassipes is the most invasive among
these species. E. crassipes, also known as water hyacinth,
because of its beautiful violet flowers make it a popular
floating aquatic ornamental. It is native to South Amer-
ica but has naturalized in more than 50 countries on five
continents [2]. The species is often considered the most
notorious aquatic weed and has been listed as one of the
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100 most dangerous invasive species in the International
Union for Conservation of Nature (IUCN) [3]. Several
characteristics of water hyacinth likely contribute to its
successful invasion of aquatic habitats, such as its rapid
growth rate, ease of propagation and the high mobility
of its free-floating life form [4, 5]. These characteristics
produce a large amount of biomass covering the water
surface, not only choking waterways and hindering trans-
port, but also causing violent changes in the plant and
animal communities of the freshwater environment [6,
7]. Most studies on water hyacinth and its closely related
species have focused on the reproductive ecology and
genetics of tristyly [8—10], but little is known about its
mechanism of explosive invasion.

With the rapid development of sequencing technol-
ogy and bioinformatics, high-quality reference genomes
have been successfully applied to help us understand
the molecular mechanisms and processes of biological
invasions and reveal the molecular genetic mechanisms
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of heterostyly [10-12]. For example, the high-quality
genome of the malignant weed Pistia stratiotes revealed
that the expansion of NBS-LRR gene families corre-
sponding to disease resistance might contribute to its
rapid invasion [11]. Recently, the genome assembly of E.
crassipes and E. paniculate have been published [10, 13,
14]. Among these, only Bisht et al. [14] have explored
the pathways contributing to its invasiveness and trans-
lational potential based on E. crassipes genome, but the
genome they reported was not assembled at the chro-
mosome level. Here, our high-quality chromosome-level
assembly of E. crassipes will provide valuable resources
for further exploring the molecular mechanisms of its
invasion and other biological characteristics.

Data description

The sample of tetraploid water hyacinth (2n =4x =32)
[15] was sampled from the Wuhan Botanical Garden,
Chinese Academy of Sciences, Hubei, China (30° 33’ N,
114° 24’ E). The young-fresh leaves were collected for
genome sequencing. Seven tissues (leaves, roots, flowers,
petiole, stolon, pistils, and stamens) were collected for
RNA sequencing. Here, three sequencing libraries were
constructed for genome sequencing: (1) an MGI short-
reads library was prepared and sequenced on a DNBSEQ-
T7 platform, generating 119.48 Gb raw data total (Data
file 1); (2) a PacBio SMRT library sequenced on a PacBio
Sequel II platform with the circular consensus sequenc-
ing (CCS) mode. Approximately 37.01 Gb HiFi sequences
with an average length of 15.4 kb were generated (Data
file 2); (3) The Hi-C library was sequenced on the Illu-
mina HiSeq 2500 platform with paired-end 150 bp reads,
generating 122 Gb raw data total. Then constructed seven
RNA-seq libraries sequenced on the NovaSeq 6000 plat-
form with the PE150 mode (Data file 4).

First, the genome size of water hyacinth was estimated
ca. 1130 Mb using flow cytometry conducted on a BD
AccuriTMC6 flow cytometer (BD Biosciences, San Jose,
CA, USA), Nelumbo nucifera (genome size = 808 Mb)
was used as reference (Data file 5). Then, the k-mer anal-
ysis was utilized to evaluate the genome characteriza-
tion based on 119.48 Gb MGI data using Jellyfish v2.1.3
[16] and GCE v1.0.0 (https://github.com/fanagislab/G
CE), which indicated an estimated genome 1184 Mb in
size (Data file 5). PacBio HiFi reads were de novo assem-
bled into contigs using Hifiasm v0.16.0 [17] with default
parameters. Then, the redundancy of the assembled
contigs was removed using the Purge_dups v1.2.5 [18]
at default settings, generating a primary genome assem-
bly of size 1132.2 Mb with a contig N50 of 18.76 Mb. To
create primary scaffolds, we utilized the 3D-DNA pipe-
line [19] with default settings. The resulting assembly
was then visualized and manually refined according to
the heatmap of chromosome interactions using Juicebox
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v1.8.8 [20]. Finally, the chromosome-level assembly
was generated by anchoring 115 contigs to 16 pseudo-
chromosomes with two sets of subgenome assemblies,
subgenome A and subgenome B, resulting in a 90.47%
anchoring rate (Data file 6). The subgenome A and sub-
genome B were 468.72 Mb and 555.64 Mb in length, with
scaffolds N50 reaching 62.66 Mb and 76.89 Mb, respec-
tively (Data file 5).

Here, four methods were used to assess the accuracy
and integrity of genome assembly: (1) approximately
99.44% of MGI short reads can be mapped to the refer-
ence genome using BWA v0.7.17 [21]; (2) the Bench-
marking Universal Single-Copy Orthologs (BUSCOs)
score of genome were calculated by BUSCO v5.6.1 [22]
with the embryophyta_odb10 database; (3) the genome
assembly was evaluated using the LTR Assembly Index
(LAI) [23]; and (4) the consensus quality values (QV) of
the genome assemblies were assessed using Merqury v1.3
[24] based on MGI short-reads. The complete BUSCOs
of subgenome A and subgenome B was 80.9% and 87.5%,
respectively. Subgenome A contained 74.0% single-copy,
6.9% duplicated, 1.2% fragmented, and 17.9% missing
BUSCOs, while subgenome B contained 78.9% single-
copy, 8.6% duplicated, 1.2% fragmented, and 11.3% miss-
ing BUSCOs (Data file 5). Also, the LAI and QV values
were 12.32 and 48.91, respectively, indicating the high
accuracy and completeness of the water hyacinth genome
assembly. In addition, we utilized SubPhaser v1.2.6 [25]
for subgenome phasing and verified the accuracy of each
subgenome’s phasing by manually inspecting the results.
Our results indicated that the subgenomes identified by
SubPhaser were highly consistent with our phased subge-
nome assemblies (Data file 5).

The repeat library of the water hyacinth assembly was
constructed using RepeatModeler v2.0.1 [26] at default
settings. Moreover, the repeat library was adopted to
scan the genome assemblies with RepeatMasker v4.1.1
(http://www.repeatmasker.org) to identify repetitive
sequences in assembly. We identified 649.82 Mb (57.39%)
of repetitive regions in the water hyacinth genome. A
combination of ab initio, homology, and RNA-seq-based
strategies were used to predict protein-coding genes
(PCGs) in the water hyacinth genome. Finally, all gene-
predicted results were integrated using EVidenceModeler
v1.1.1 [27], then PASA [28] was performed to update the
result of EVidenceModeler. For more details on genome
annotations, please see Data file 5. A total of 57,683 PCGs
were predicted, with 25,445 and 27,992 PCGs in subge-
nome A and subgenome B, respectively (Data files 7-9).
The predicted PCGs were functionally annotated using
BLAST v2.9.0 (E-value =1E-05) [29] against the public
protein databases, namely the KEGG [30], GO [31], NR (
https://ftp.ncbi.nlm.nih.gov/), Swiss-Prot (http://www.ex
pasy.ch/sprot), InterPro [32], and KOG (https://ftp.ncbi.
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Table 1 Overview of all data files/data sets

Page 3 of 4

Labe Name of data file/data set  File types (file Data repository and identifier (DOI or accession number)
extension)
Datafile 1  Raw short MGl sequencing Fasta file (fastqg) ~ NCBI Sequence Read Archive, https://identifiers.org/ncbi/insdc.sra:SRR25056966 [33]
reads
Datafile2  Raw long HiFi sequencing Fasta file (fastg) ~ NCBI Sequence Read Archive, https://identifiers.org/ncbi/insdc.sra:SRR25056964 [34]
reads
Data file 3 Raw Hi-C sequencing reads Fasta file (fastq) NCBI Sequence Read Archive, https://identifiers.org/ncbi/insdc.sra:SRR25056965 [35]
Datafile4  Raw RNA-seqreads for seven Fastafile (fastq) ~ NCBI Sequence Read Archive, https://identifiers.org/ncbi/insdc.sra:SRR25056967
tissues https://identifiers.org/ncbi/insdc.sra:SRR25056968
https://identifiers.org/ncbi/insdc.sra:SRR25056969
https://identifiers.org/ncbi/insdc.sra:SRR25056970
https://identifiers.org/ncbi/insdc.sra:SRR25056971
https://identifiers.org/ncbi/insdc.sra:SRR25056972
https://identifiers.org/ncbi/insdc.sra:SRR25056973 [36]
Datafile5  Supplementary of the pdf file (pdf) Figshare, https://doi.org/10.6084/m9.figshare.23651262 [37]
genome
Datafile6  Assembled genome Fasta file (fasta) ~ NCBI GenBank, https://identifiers.org/ncbi/insdc.gca:GCA_030549335.1 [38]
Datafile7  Predicted gene Gff3 file (gff) Figshare, https://doi.org/10.6084/m9.figshare.23635401 [39]
Datafile8  Predicted gene-CDS CDS file (.cds) Figshare, https://doi.org/10.6084/m9.figshare.23635401 [39]
Datafile9  Predicted gene-Protein Protein file (pep)  Figshare, https://doi.org/10.6084/m9.figshare.23635401 [39]
Datafile 10 Gene annotation using KEGG, Annotation file Figshare, https://doi.org/10.6084/m9.figshare.23635401 [39]
GO, InterPro, Swiss-Prot, NR, (html)

and KOG databases

nih.gov/pub/COG/KOGY/). A total of 56,332 PCGs can be
annotated function (Data file 10) (Table 1).

Limitations

Although the average BUSCOs score of the two subge-
nome sets in the current version (84.2%) of water hya-
cinth was slightly lower than that of the previous version
(87.4%), the higher LAI (current: 12.32, previous: 11.78)
and QV (current: 48.91, previous: 42.0) values indi-
cated improved reliability of the genome assembly [13].
Howerer, there are still 71 gaps in the the assembly pre-
sented here. In the future, water hyacinth genome can be
enhanced to T2T (telomere-to-telomere) level by com-
bining Oxford Nanopore Technologies ultra-long reads,
which will generate rich genomic information. Also, the
annotation of the genome can be further improved based
on full-length transcriptomes.
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