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100 most dangerous invasive species in the International 
Union for Conservation of Nature (IUCN) [3]. Several 
characteristics of water hyacinth likely contribute to its 
successful invasion of aquatic habitats, such as its rapid 
growth rate, ease of propagation and the high mobility 
of its free-floating life form [4, 5]. These characteristics 
produce a large amount of biomass covering the water 
surface, not only choking waterways and hindering trans-
port, but also causing violent changes in the plant and 
animal communities of the freshwater environment [6, 
7]. Most studies on water hyacinth and its closely related 
species have focused on the reproductive ecology and 
genetics of tristyly [8–10], but little is known about its 
mechanism of explosive invasion.

With the rapid development of sequencing technol-
ogy and bioinformatics, high-quality reference genomes 
have been successfully applied to help us understand 
the molecular mechanisms and processes of biological 
invasions and reveal the molecular genetic mechanisms 

Objective
The genus Eichhornia (Pontederiaceae) has seven spe-
cies, all of which are potentially invasive [1]. However, 
the Eichhornia species vary in their global distribution 
and invasiveness. E. crassipes is the most invasive among 
these species. E. crassipes, also known as water hyacinth, 
because of its beautiful violet flowers make it a popular 
floating aquatic ornamental. It is native to South Amer-
ica but has naturalized in more than 50 countries on five 
continents [2]. The species is often considered the most 
notorious aquatic weed and has been listed as one of the 
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Abstract
Objectives Water hyacinth (Eichhornia crassipes) is one of the most notorious invasive aquatic plants in the world and 
is known to cause significant ecological and socioeconomic impacts. Here, we reported a high-quality chromosome-
level genome for water hyacinth, which will be a valuable reference for future investigations of its invasion.

Data description A chromosome-level genome for water hyacinth was constructed by combing MGI short-reads 
sequencing, PacBio HiFi (High-fidelity) sequencing, and Hi-C sequencing, which resulted in ca. 1132.2 Mb in size 
the contig and scaffold N50 length of 18.76 Mb and 69.84 Mb, respectively. A total of 1024.36 Mb (90.47%) of the 
assembled sequences were anchored to 16 pseudochromosomes, dividing into subgenome A (468.72 Mb in size) and 
subgenome B (555.64 Mb in size). A total of 57,683 protein-coding genes were predicted, including 25,445 protein-
coding genes for subgenome A and 27,992 protein-coding genes for subgenome B. Furthermore, the LAI and QV 
scores of the water hyacinth genome were 12.32 and 48.91, respectively.
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of heterostyly [10–12]. For example, the high-quality 
genome of the malignant weed Pistia stratiotes revealed 
that the expansion of NBS-LRR gene families corre-
sponding to disease resistance might contribute to its 
rapid invasion [11]. Recently, the genome assembly of E. 
crassipes and E. paniculate have been published [10, 13, 
14]. Among these, only Bisht et al. [14] have explored 
the pathways contributing to its invasiveness and trans-
lational potential based on E. crassipes genome, but the 
genome they reported was not assembled at the chro-
mosome level. Here, our high-quality chromosome-level 
assembly of E. crassipes will provide valuable resources 
for further exploring the molecular mechanisms of its 
invasion and other biological characteristics.

Data description
The sample of tetraploid water hyacinth (2n = 4x = 32) 
[15] was sampled from the Wuhan Botanical Garden, 
Chinese Academy of Sciences, Hubei, China (30° 33′ N, 
114° 24′ E). The young-fresh leaves were collected for 
genome sequencing. Seven tissues (leaves, roots, flowers, 
petiole, stolon, pistils, and stamens) were collected for 
RNA sequencing. Here, three sequencing libraries were 
constructed for genome sequencing: (1) an MGI short-
reads library was prepared and sequenced on a DNBSEQ-
T7 platform, generating 119.48 Gb raw data total (Data 
file 1); (2) a PacBio SMRT library sequenced on a PacBio 
Sequel II platform with the circular consensus sequenc-
ing (CCS) mode. Approximately 37.01 Gb HiFi sequences 
with an average length of 15.4 kb were generated (Data 
file 2); (3) The Hi-C library was sequenced on the Illu-
mina HiSeq 2500 platform with paired-end 150 bp reads, 
generating 122 Gb raw data total. Then constructed seven 
RNA-seq libraries sequenced on the NovaSeq 6000 plat-
form with the PE150 mode (Data file 4).

First, the genome size of water hyacinth was estimated 
ca. 1130 Mb using flow cytometry conducted on a BD 
AccuriTMC6 flow cytometer (BD Biosciences, San Jose, 
CA, USA), Nelumbo nucifera (genome size = 808 Mb) 
was used as reference (Data file 5). Then, the k-mer anal-
ysis was utilized to evaluate the genome characteriza-
tion based on 119.48 Gb MGI data using Jellyfish v2.1.3 
[16] and GCE v1.0.0 ( h t t p  s : /  / g i t  h u  b . c  o m /  f a n a  g i  s l a b / G 
C E), which indicated an estimated genome 1184 Mb in 
size (Data file 5). PacBio HiFi reads were de novo assem-
bled into contigs using Hifiasm v0.16.0 [17] with default 
parameters. Then, the redundancy of the assembled 
contigs was removed using the Purge_dups v1.2.5 [18] 
at default settings, generating a primary genome assem-
bly of size 1132.2 Mb with a contig N50 of 18.76 Mb. To 
create primary scaffolds, we utilized the 3D-DNA pipe-
line [19] with default settings. The resulting assembly 
was then visualized and manually refined according to 
the heatmap of chromosome interactions using Juicebox 

v1.8.8 [20]. Finally, the chromosome-level assembly 
was generated by anchoring 115 contigs to 16 pseudo-
chromosomes with two sets of subgenome assemblies, 
subgenome A and subgenome B, resulting in a 90.47% 
anchoring rate (Data file 6). The subgenome A and sub-
genome B were 468.72 Mb and 555.64 Mb in length, with 
scaffolds N50 reaching 62.66 Mb and 76.89 Mb, respec-
tively (Data file 5).

Here, four methods were used to assess the accuracy 
and integrity of genome assembly: (1) approximately 
99.44% of MGI short reads can be mapped to the refer-
ence genome using BWA v0.7.17 [21]; (2) the Bench-
marking Universal Single-Copy Orthologs (BUSCOs) 
score of genome were calculated by BUSCO v5.6.1 [22] 
with the embryophyta_odb10 database; (3) the genome 
assembly was evaluated using the LTR Assembly Index 
(LAI) [23]; and (4) the consensus quality values (QV) of 
the genome assemblies were assessed using Merqury v1.3 
[24] based on MGI short-reads. The complete BUSCOs 
of subgenome A and subgenome B was 80.9% and 87.5%, 
respectively. Subgenome A contained 74.0% single-copy, 
6.9% duplicated, 1.2% fragmented, and 17.9% missing 
BUSCOs, while subgenome B contained 78.9% single-
copy, 8.6% duplicated, 1.2% fragmented, and 11.3% miss-
ing BUSCOs (Data file 5). Also, the LAI and QV values 
were 12.32 and 48.91, respectively, indicating the high 
accuracy and completeness of the water hyacinth genome 
assembly. In addition, we utilized SubPhaser v1.2.6 [25] 
for subgenome phasing and verified the accuracy of each 
subgenome’s phasing by manually inspecting the results. 
Our results indicated that the subgenomes identified by 
SubPhaser were highly consistent with our phased subge-
nome assemblies (Data file 5).

The repeat library of the water hyacinth assembly was 
constructed using RepeatModeler v2.0.1 [26] at default 
settings. Moreover, the repeat library was adopted to 
scan the genome assemblies with RepeatMasker v4.1.1 
(http://www.repeatmasker.org) to identify repetitive 
sequences in assembly. We identified 649.82 Mb (57.39%) 
of repetitive regions in the water hyacinth genome. A 
combination of ab initio, homology, and RNA-seq-based 
strategies were used to predict protein-coding genes 
(PCGs) in the water hyacinth genome. Finally, all gene-
predicted results were integrated using EVidenceModeler 
v1.1.1 [27], then PASA [28] was performed to update the 
result of EVidenceModeler. For more details on genome 
annotations, please see Data file 5. A total of 57,683 PCGs 
were predicted, with 25,445 and 27,992 PCGs in subge-
nome A and subgenome B, respectively (Data files 7–9). 
The predicted PCGs were functionally annotated using 
BLAST v2.9.0 (E-value = 1E-05) [29] against the public 
protein databases, namely the KEGG [30], GO [31], NR ( 
h t t p  s : /  / f t p  . n  c b i . n l m . n i h . g o v /), Swiss-Prot  (   h t t p : / / w w w . e x 
p a s y . c h / s p r o t     ) , InterPro [32], and KOG ( h t t p  s : /  / f t p  . n  c b i  . 
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n i  h . g o  v /  p u b / C O G / K O G /). A total of 56,332 PCGs can be 
annotated function (Data file 10) (Table 1).

Limitations
Although the average BUSCOs score of the two subge-
nome sets in the current version (84.2%) of water hya-
cinth was slightly lower than that of the previous version 
(87.4%), the higher LAI (current: 12.32, previous: 11.78) 
and QV (current: 48.91, previous: 42.0) values indi-
cated improved reliability of the genome assembly [13]. 
Howerer, there are still 71 gaps in the the assembly pre-
sented here. In the future, water hyacinth genome can be 
enhanced to T2T (telomere-to-telomere) level by com-
bining Oxford Nanopore Technologies ultra-long reads, 
which will generate rich genomic information. Also, the 
annotation of the genome can be further improved based 
on full-length transcriptomes.
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