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output of over 700,000 tons. To promote LMB breed-
ing, extensive genetic and breeding research is currently 
underway, focusing primarily on genetic diversity [3, 4], 
whole genome association analysis of growth traits [5, 6], 
molecular mechanisms of sex determination [7, 8], and 
tolerance to environmental stress [9, 10], etc. All related 
research fields require a genome assembly of the LMB. 
Currently, three genomes of LMB have been assembled 
[11, 12], which include two female and one male indi-
viduals, all from different breeding populations. Here, we 
sequenced a male LMB from a new population and anno-
tated its gene structure and function, providing further 
insights and research basis for subsequent LMB genome 
studies.

Data description
The sequencing individual was collected from Guang-
dong Liangshi Aquatic Seed Industry Co., Ltd. (23.19N, 
112.78E) and anesthetized with MS- 222. The sex was 

Objective
The Largemouth bass (Micropterus salmoides; LMB), 
native to North America, is a carnivorous freshwater 
fish belonging to the Centrarchidae family. Known for 
its superior meat quality and absence of intermuscu-
lar bones, the LMB has been introduced and cultivated 
worldwide [1]. Since its introduction to China in 1970, 
the farming area for LMB has been rapidly expanded [2]. 
Following artificial breeding and domestication, LMB has 
adapted to aquaculture environments, with an annual 
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Abstract
Objective Largemouth bass (Micropterus salmoides, LMB) is an important species in aquaculture, and the annual 
production is rapidly increasing. Genetic and breeding studies related to LMB have promising applications, and a 
high-quality genome assembly is essential for interpreting genetic and sequencing data. In this study, we sequenced 
the genome of a male LMB using the PacBio Sequel platform, high-throughput chromosome conformation capture 
(Hi-C), and paired-end Illumina sequencing. Additionally, Full-length transcript sequencing was performed using 
isoform sequencing (Iso-Seq). Following the assembly and annotation, a draft assembly for male LMB was obtained.

Data description This work generated PacBio data of 164.5 Gb, Hi-C data of 113.4 Gb, Illumina data of 54.7 Gb, and 
Iso-Seq data of 22.8 Gb. The assembly revealed that the LMB genome has a total length of 877.7 Mb, with an N50 
of 37.2 Mb, comprising 23 chromosomes and 202 scaffolds. Annotation results indicated that 32.8% of the genome 
consists of repetitive sequences, containing 23,952 coding genes with an average gene length of 17,328 bp.
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determined by the sexual gland, and individuals with 
mature testis were selected for sampling. The sampled 
tissues include muscle, liver, spleen, kidney, gonad, and 
intestines. Genomic DNA was extracted from muscle 
and sequenced on three platforms: paired-end Illumina 
(PE), PacBio Sequel (PacBio), and Illumina HiSeq X 
Ten (Hi-C). The three platforms generated PacBio data 
for 164.5Gb (Table  1, Data file 1, [13]), Hi-C data for 
113.4Gb (Table 1, Data file 2, [14]), and Illumina data for 
54.7Gb (Table 1, Data file 3, [15]). RNA from various tis-
sues was extracted using Trizol reagent (Invitrogen, CA, 
USA) and sequenced with PacBio full-length isoform 
sequencing (ISO-seq, Pacific Biosciences, CA, USA), 
which generated ISO-seq data for 22.8Gb (Table 1, Data 
file 4, [16]). Raw Iso-Seq reads were processed using the 
IsoSeq pipeline to obtain polished consensus sequences. 
As a result,187,738 consensus sequences with an average 
length of 2063.07 bp were generated (Table 1, Data file 5, 
[17]).

In the genome survey, we used FastQC (v0.11.8) for 
quality control and Jellyfish (v2.3.0) (kmer = 17) to esti-
mate the genomic heterozygosity and size [20]. The 
genome size was determined to be 870.16 Mb, with a 
heterozygosity of 0.20% and a repetitive sequence pro-
portion of 43.40% (Table 1, Data file 6, [18]). In genome 
assembly, we used the MECAT2 (v20190314) to assemble 
PacBio reads [21], used Racon (v1.3.1) and Pilon (v1.22) 
to correct the base errors [22, 23], Juicer (v1.6) with 
Hi-C data to generate the interaction maps, and Juice-
Box (v1.22) to correct the assembly error [24]. The final 

assembled genome was 877,669,248 bp in length, con-
sisting of a total of 21 chromosomes, along with 202 long 
scaffolds, resulting in an N50 of 37.2 Mb (Table 1, Data 
file 7, [19]). Then, the PacBio reads was mapped to the 
assembly using the minimap2(v2.17) software [25], show-
ing an alignment rate of 91.48%. To evaluate the qual-
ity of the assembly, BUSCO (v4.0.1) and merqury (v1.3) 
software were used to assess completeness [26, 27]. The 
BUSCO results indicated that the assembly completeness 
was 97.8% (Table 1, Data file 8, [18]). The merqury soft-
ware showed a QV score of 34.91 and a completeness of 
97.01%. In the spectra-cn plot, a homozygous peak was 
found at 53X coverage, suggesting a highly complete and 
accurate assembly (Table 1, Data file 9, [18]). Compared 
to another LMB genome GCA_014851395.1, the two 
genomes shared 820.49 Mb of collinearity blocks, which 
is over 95.2% of the autosomes (Table  1, Data file 10, 
[18]).

In repetitive sequence annotation, the tandem repeat 
was identified by Tandem Repeat Finder (v4.09) software 
[28], the known repetitive sequence was identified by 
RepeatMasker (open- 4.0.9), RepeatProteinMask (open- 
4.0.9), and Repbase databases, the de novo repeat was 
identified by the RepeatModeler (open- 1.0.11) and LTR-
FINDER (v1.0.5) [29]. Analysis revealed that the genome 
of LMB contained 43.41% repetitive sequences, among 
which DNA transposons and SINE accounted for more 
than 32.8%.

In gene prediction, three methods were used: de novo, 
homology-based, and transcriptome sequencing-based 

Table 1 Overview of data files and data sets
Label Name of data file/data set File types (file 

extension)
Data repository and identifier (DOI or accession number)

Data file 1 Raw WGS long reads Fastq file (.fastq.gz) NCBI ( h t t p  s : /  / i d e  n t  i fi   e r s  . o r g  / n  c b i  / i n  s d c .  s r  a : S R R 1 2 4 8 9 1 5 7) [13]
Data file 2 Raw Hi-C reads Fastq file (.fastq.gz) NCBI ( h t t p  s : /  / i d e  n t  i fi   e r s  . o r g  / n  c b i  / i n  s d c .  s r  a : S R R 1 2 6 0 5 9 5 0) [14]
Data file 3 Raw illumina HiSeq reads Fastq file (.fastq.gz) NCBI ( h t t p  s : /  / i d e  n t  i fi   e r s  . o r g  / n  c b i  / i n  s d c .  s r  a : S R R 1 2 4 4 3 9 9 1) [15]
Data file 4 Raw ISO-seq reads Fastq file (.fastq.gz) NCBI ( h t t p  s : /  / i d e  n t  i fi   e r s  . o r g  / n  c b i  / i n  s d c .  s r  a : S R R 3 1 1 7 9 4 7 6) [16]
Data file 5 Full length transcripts consensus sequencing Fastq file (.fastq.gz) NCBI ( h t t p  s : /  / i d e  n t  i fi   e r s  . o r g  / n  c b i  / i n  s d c .  s r  a : S R R 1 2 4 8 9 1 5 6) [17]
Data file 6 Genome survey Text file (.txt) Figshare ( h t t p  s : /  / d o i  . o  r g /  1 0 .  6 0 8 4  / m  9 . fi   g s  h a r e  . 2  6 3 9 1 4 7 2 . v 2) [18]
Data file 7 Assembled genome Fasta file (.fasta) NCBI ( h t t p  s : /  / i d e  n t  i fi   e r s  . o r g  / n  c b i  / i n  s d c .  g c  a : G C A _ 0 1 9 6 7 7 2 3 5 . 

1) [19]
Data file 8 BUSCO assessment of the assembly Text file (.txt) Figshare ( h t t p  s : /  / d o i  . o  r g /  1 0 .  6 0 8 4  / m  9 . fi   g s  h a r e  . 2  6 3 9 1 4 7 2 . v 2) [18]
Data file 9 Merqury spectra-cn plot Portable network 

graphics (.png)
Figshare ( h t t p  s : /  / d o i  . o  r g /  1 0 .  6 0 8 4  / m  9 . fi   g s  h a r e  . 2  6 3 9 1 4 7 2 . v 2) [18]

Data file 10 Genome synteny and collinearity analysis Portable document 
format(.pdf )

Figshare ( h t t p  s : /  / d o i  . o  r g /  1 0 .  6 0 8 4  / m  9 . fi   g s  h a r e  . 2  6 3 9 1 4 7 2 . v 2) [18]

Data file 11 Predicted gene Spreadsheet(.xlsx) Figshare ( h t t p  s : /  / d o i  . o  r g /  1 0 .  6 0 8 4  / m  9 . fi   g s  h a r e  . 2  6 3 9 1 4 7 2 . v 2) [18]
Data file 12 Predicted genes - nucleotide sequences Fasta file (.fasta) Figshare ( h t t p  s : /  / d o i  . o  r g /  1 0 .  6 0 8 4  / m  9 . fi   g s  h a r e  . 2  6 3 9 1 4 7 2 . v 2) [18]
Data file 13 Predicted genes - translated sequences Fasta file (.fasta) Figshare ( h t t p  s : /  / d o i  . o  r g /  1 0 .  6 0 8 4  / m  9 . fi   g s  h a r e  . 2  6 3 9 1 4 7 2 . v 2) [18]
Data file 14 Gene annotation using GO, interPro a, KEGG, 

NR, Swissprot, TrEMBL.
Spreadsheet(.xlsx) Figshare ( h t t p  s : /  / d o i  . o  r g /  1 0 .  6 0 8 4  / m  9 . fi   g s  h a r e  . 2  6 3 9 1 4 7 2 . v 2) [18]

Data file 15 Predicted ncRNA Spreadsheet(.xlsx) Figshare ( h t t p  s : /  / d o i  . o  r g /  1 0 .  6 0 8 4  / m  9 . fi   g s  h a r e  . 2  6 3 9 1 4 7 2 . v 2) [18]
Data file 16 Comparison of assembly and annotation 

quality
Spreadsheet(.xlsx) Figshare ( h t t p s :   /  / d o  i .  o r  g  /  1 0  . 6 0   8 4   / m  9 . fi   g s h   a r  e . 2 6 3 9  1 4 7 2 . v 2) [18]
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gene predictions. AUGUSTUS (v3.3) and Genscan were 
used for de novo prediction [30]; Exonerate (v2.2.0) was 
employed for homology-based gene prediction, using six 
species as references. TransDecoder was used for tran-
scriptome sequencing-based gene predictions. MAKER 
(v3.00) was used to integrate the prediction results of the 
three methods [31]. As a result, 23,952 non-redundant 
genes were obtained, with an average gene length of 
17,328.32 bp (Table 1, Data file 11, 12 and 13 [18]).

In gene function annotation, BLASTP (v2.6.0+) was 
employed to align gene sequences to the NR, TrEMBL, 
InterPro, Swiss-Prot, KEGG, and GO databases [32]. 
Through this approach, a total of 23,303 genes were suc-
cessfully annotated (Table  1, Data file 14, [18]). For non-
coding RNA prediction, tRNAscan-SE (v1.3.1) was used 
to identify the tRNA [33], RNAs were identified using the 
blastn program against related species sequences. miRNAs 
and snRNAs were identified using Infernal (v1.1.2) soft-
ware against the Rfam (v14.1) database [34, 35]. In total, 471 
miRNA, 2,683 tRNA, 232 rRNA, and 1,200 snRNA were 
annotated (Table 1, Data file 15, [18]).

Limitations
The genome sequencing strategies in this study included 
PE, Hi-C and PacBio. Although a draft genome was assem-
bled, its quality has not significantly improved compared to 
other assemblies (Table 1, Data file 16, [18]), and the gaps 
still exist. In the future, a gap-free, telomere-to-telomere 
genome will be needed.

Abbreviations
LMB  Largemouth bass
PE  Paired-end Illumina sequencing
Pacbio  PacBio Sequel sequencing platform
ISO-seq  PacBio full-length isoform sequencing
HI-C  High-throughput chromosome conformation capture
SINE  Short interspersed nuclear elements
GO  Gene Ontology
KEGG  Kyoto Encyclopedia of Genes and Genomes
Nr  Non-redundant
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