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Background
Rabbit meat becomes increasingly popular in China 
because of its remarkable nutritional value and unique 
flavour. On the one hand, rabbit meat has moderately 
high energy values, low fat contents, and low cholesterol 
levels [1] and greatly satisfies modern consumers’ desire 
for a healthy lifestyle. On the other hand, the delectable 
texture and taste of rabbit meat make it more prevalent 
worldwide, especially in China. As the largest rabbit meat 
producer worldwide, Chinese rabbit meat production has 
steadily increased from 690,000 tons in 2010 to 849,150 
tons in 2016 ( h t t p  : / /  w w w .  f a  o . o  r g /  f a o s  t a  t / e n / # d a t a / Q L). 
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Abstract
Background The Sichuan white rabbit is a unique domestic breed and is famous for its high meat production. 
Muscle development is a complicated biological process, but the underlying regulatory mechanisms have not 
been elucidated. Here, we generated comprehensive transcriptome datasets (i.e., mRNAs, miRNAs and lncRNAs) in 
three developmental stages of Sichuan white rabbits, and aim to systematically explore the regulatory network in 
myogenesis.

Results We generated extensive transcriptome datasets (mRNAs, miRNAs and lncRNAs) revealing the myogenic 
regulatory network at different time points. Our differential expression analysis identified 2,995 DE genes, 1,211 
DE-lncRNAs, and 305 DE-miRNAs with distinct expression patterns across developmental stages. In addition, 
functional enrichment analysis of DE mRNAs and miRNAs indicates their involvement in muscle growth, 
development, and regeneration, highlighting biological processes and muscle-specific functions. Interaction analysis 
between DE-lncRNAs and mRNAs uncovered a complex regulatory network, especially between 21 and 27 days 
of development. These findings contribute to better understanding of the transcriptomic changes during muscle 
development and have implications for breeding improvement in Sichuan white rabbits.

Conclusions Our study provides a comprehensive overview of the transcriptomic changes during muscle 
development in Sichuan white rabbits. The identification and functional annotation of DE genes, miRNAs, and 
lncRNAs provide valuable insights into the molecular mechanisms underlying this process. These findings pave the 
way for targeted investigations into the role of non-coding RNAs in muscle biology.
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China has various domesticated rabbit breeds, while most 
local breeds achieve a low meat production rate [2]. Sich-
uan white rabbit, due to its high-yield meat production, 
strong adaptability and fecundity [2, 3], has become one 
of the well-known breeds in China. Thus, improving the 
quality and production of Sichuan white rabbits is critical 
for breeding improvement.

Muscle is the largest organ of body mass in humans 
and other animals, and its functions include move-
ment, postural support and thermogenesis [4]. The 
development of muscle is a complicated biological 
process that includes distinct embryonic and postnatal 
phases. Many diffusible signaling molecules, transcrip-
tion factors and non-coding RNAs [e.g., microRNAs 
(miRNAs) and long non-coding RNAs (lncRNAs)] that 
contribute to muscle development have been identi-
fied. These regulators serve as direct templates for 
protein synthesis, which is fundamental to the growth 
and repair of muscle fibers [5]. In vertebrate embryos, 
numerous miRNAs are expressed in the developing 
somites of zebrafish [6], Xenopus [7] and chicks [8]. 
Muscle-specific mRNAs, such as miR- 1 and miR- 133, 
which are known to regulate muscle differentiation by 
targeting specific transcription factors and structural 
proteins, can regulate muscle maturation [9]. In addi-
tion, lncRNAs can act as scaffolds for certain regula-
tory proteins or be involved in the regulation of other 
non-coding RNAs [10–12]. Previous studies reported 
that lncRNAs associated with myogenesis include ste-
roid receptor RNA activator (Sra), which co-activates 
MyoD [13], and LncMyoD, which is itself activated 
by MyoD, together with linc-MD1, which regulates 
miR- 133 to further enhance differentiation [14]. In 
addition, a novel lncRNA lncMGR, which promotes 
myoblast differentiation and muscle fiber hypertro-
phy, can recruit cyclin-dependent kinase 9 (CDK9) and 
sponge miRNAs, such as miR- 2131 - 5p, to regulate 
the expression of skeletal muscle myosin heavy chain 
1 A (MYH1 A) [4].

Current studies are limited to the regulation of either 
mRNAs or miRNAs related to the proliferation and dif-
ferentiation of skeletal muscle cells. Thus, the identifica-
tion of more potential muscle-associated protein-coding 
genes (i.e., mRNAs) and non-coding RNAs (e.g., miRNAs 
and lncRNAs) could better dissect the underlying regu-
latory mechanisms. In this study, we generated compre-
hensive transcriptome datasets (i.e., mRNAs, miRNAs 
and lncRNAs) in different developmental stages of Sich-
uan white rabbit and aimed to systematically explore the 
regulatory network in myogenesis. Our study reveals an 
epigenetic-mediated myogenic regulatory mechanism 
and provides insights into the roles of non-coding RNA 
in myogenesis.

Methods
Animals and sample collection
The Sichuan white rabbit (SWR) used in this study were 
raised on the farm of Sichuan Animal Sciences Acad-
emy (Chengdu, Sichuan Province) under standard and 
uniform housing conditions (temperature: 22–26 °C; 
humidity: 60–70%). All the animals were healthy male 
rabbits (i.e., siblings) with similar body conditions. The 
animals were fed twice per day with formula diets con-
taining 1.2% crude protein, 16% crude fiber, 8% crushed 
ash, 0.6% calcium, 1.2% lysine, 0.4% phosphorus, and 
0.6% sodium chloride and had ad libitum access to water. 
The longissimus dorsi of rabbits is no longer expressed 27 
days after delivery. For long non-coding RNA sequenc-
ing, longissimus muscle tissues were collected at 21 days, 
24 days and 27 days after birth, with three biological 
replicates for each time point. Hereinafter, we used “21 
d”, “24 d” and “27 d” to represent the above time points 
(Fig.  1A). For the mRNA and miRNA sequencing sam-
ples, muscle tissues were collected at 0 day, 1 month and 
6 months after delivery to represent the fetal, child and 
adult stages separately, and were marked as “0 d”, “1 mon” 
and “6 mon” hereinafter. Due to the limitations of sample 
collection, we obtained three biological replicates for 0 d, 
one biological replicate for 1 month and one biological 
replicate for 6 months (Fig. 1A). Muscle tissues were col-
lected immediately after slaughter. The tissues were cut 
into small pieces and rinsed with PBS. The collected tis-
sues were stored in liquid nitrogen and then transferred 
to − 80 °C for subsequent high-throughput sequencing.

RNA extraction, library construction and sequencing
Total RNA from muscle was extracted using TRIzol 
reagent (Thermo Fisher Scientific, Waltham, MA, USA) 
according to the manufacturer’s protocol. After purifi-
cation, the quality was checked via agarose gel electro-
phoresis and a NanoPhotometer® spectrophotometer 
(IMPLEN, CA, USA). The RNA was measured with an 
Agilent 2100 RNA 6000 Nano Kit (Agilent Technolo-
gies, Waldbronn, Germany). All the samples had high-
quality RNA with an RNA integrity number (RIN) > 6. 
For mRNAs and lncRNAs, strand-specific sequenc-
ing libraries were constructed via the ribosomal RNA 
(rRNA) removal method following the manufacturer’s 
instructions using the Illumina Standard RNA Sample 
Library Preparation Kit (Illumina, San Diego, CA, USA). 
For miRNAs, RNA molecules ranging from 18–30 nt in 
size were enriched from total RNA by the polyacrylamide 
gel electrophoresis (PAGE). The 3′ adaptors were then 
added, followed by enrichment of RNAs with lengths of 
36–44 nt and ligation of 5’ adaptors to the RNAs. RNAs 
were converted to cDNA, and PCR amplification was 
performed for library construction. All the above libraries 
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were sequenced on the Illumina NovaSeq 6000 platform, 
and generated 150-bp paired-end (PE150) reads.

Data pre-processing
All the raw RNA-seq (i.e., mRNA, miRNA and lncRNA) 
reads were filtered using Trimmomatic (v0.36) software 
[15]. Specifically, adapters and reads of low quality, in 
which more than half of the bases had quality < = 20 or 
more than 10% of the bases were missing (Ns > 10%) were 
discarded to obtain clean reads. The clean reads were 
assessed with FastQC (v0.11.9) ( h t t p  s : /  / w w w  . b  i o i  n f o  r m 
a t  i c  s . b  a b r  a h a m  . a  c . u  k / p  r o j e  c t  s / f a s t q c /) for quality check.

For the mRNA sequencing reads, the clean reads were 
mapped to the rabbit reference genome OryCun2.0 
(GCA_000003625.1) by HISAT2 software (v2.1.0) [16] 
with the following parameters: −n-ceil: L, 0, 0.15; −mp: 
MX = 6, MN = 2; −np: 1; −rdg: 5, 3; −efg: 5, 3; −score-min: 
L, 0, − 0.2. Mapped reads were quantified with the Featu-
reCounts program from the Subread suite (v2.0) [17]. The 
raw counts of genes were normalized to transcripts per 
million (TPM) with the in-house script for subsequent 
analysis.

For miRNA sequencing, clean reads were aligned to the 
rabbit (OryCun2.0) mature miRNA database in miRBase 
(v20) [18] and matched with known miRNAs, ribosomal 
RNA (rRNA), small nuclear RNA (snRNA), small nucleo-
lar RNA (snoRNA), and transfer RNA (tRNA) sequences. 
miRNA abundance was quantified as counts and normal-
ized to the TPM. Unmapped clean reads were further 

aligned to the rabbit reference genome OryCun2.0 using 
bowtie2 (v2.4.4) [19] software. To remove tags derived 
from protein-coding genes, repeat sequences, ncRNA, 
rRNA, tRNA, snRNA, and snoRNA, small RNA tags 
were mapped to RepeatMasker software [20] and the 
Rfam database. The distribution of the alignments was 
summarized using the software miREvo [21]. Thek novel 
miRNAs were predicted by miRDeep2 [22].

For the lncRNA sequencing reads, the clean reads were 
mapped to the rabbit reference genome via the HISAT2 
(v2.1.0) program [16]. Then alignments were transferred 
to StringTie (v1.3.3) [23] and Cuffcompare (v2.2.1) [24] 
software for transcript assembly.

Differential expression analysis
For each type of RNA-seq data in this study, we per-
formed differential expression analysis via the R package 
DESeq2 (v1.32.0) [25] to identify differentially expressed 
(DE) genes, miRNAs and lncRNAs between time points 
(mRNA-seq: 0 d vs. 1 mon, 0 d vs. 6 mon, and 1 mon vs. 
6 mon; miRNA-seq: 0 d vs. 1 mon, 0 d vs. 6 mon, and 1 
mon vs. 6 mon; lncRNA-seq: 21 d vs. 24 d, 21 d vs. 27 d, 
and 24 d vs. 27 d). In each comparison, the former group 
(e.g., “0 d” in “0 d vs. 1 mon”) was used as the control 
group when we mentioned up-regulated and down-reg-
ulated expressions/genes. The matrix of normalized TPM 
was used for DE analysis. The P-values were corrected 
via the Benjamini–Hochberg method. Corrected P-value 
< 0.05 and |log2FC| > 1 were set as the thresholds.

Fig. 1 Experimental design and overview of the data. A Schematic diagram of the experiment and data generation. B Length distribution of sRNAs. C 
Classification of miRNAs. Colors represent different types of sRNAs. D Classification of lncRNAs. Colors represent different types of genomic annotations. 
E The intersection of lncRNAs predicted by the coding potential calculator (CPC), coding-non-coding index (CNCI) and protein families database (PFAM)
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Target gene prediction for differentially expressed MiRNAs 
and LncRNAs
Target gene prediction was performed between three 
groups of differentially expressed miRNAs and lncRNAs. 
The prediction of target genes of miRNAs was performed 
by miRanda [26]. For DE lncRNAs, target genes were 
predicted by the positional relationship (co-location) 
and expression correlation (co-expression) of lncRNAs 
with protein-coding genes. lncRNA–mRNA co-regulated 
pairs (Pearson’s correlation coefficient > 0.8 and P- value 
< 0.05) were screened for Gene Ontology (GO) analysis.

Functional enrichment analysis
For DE RNAs (i.e., mRNAs, miRNAs and lncRNAs) from 
all comparisons, we conducted Gene Ontology (GO) 
enrichment analysis with the R package Goseq (v3.19) 
[27]. We built a reference database for rabbits with 
the Oryctolagus_cuniculus GTF file (Ensembl genome 
browser 113). Additionally, Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis was also per-
formed by KOBAS (https://bio.tools/kobas). P-values 
were calculated by hyper-geometric test. The above bio-
logical processes and pathways were considered statisti-
cally significant with P-values < 0.05.

Results
Summary of the mRNA, MiRNA and LncRNA sequencing 
data
A total of 19 RNA sequencing datasets were generated in 
this study, including 5 mRNA-seq, 5 miRNA-seq and 9 
lncRNA-seq datasets. Each sequencing data contained 3 
developmental time points (Fig. 1A, Table S1). After the 

quality control of the raw reads, we obtained 282,575,600 
mapped paired-end reads with an average mapping rate 
of 85.49% (ranging from 82.52 to 90.28%) for the mRNA 
datasets (Table S2), 38,485,181 mapped paired-end reads 
with an average mapping rate of 91.72% (ranging from 
85.36 to 95.97%) for the miRNA datasets (Table S3) and 
794,268,228 mapped paired-end reads with an average 
mapping rate of 90.51% (ranging from 89.37 to 91.21%) 
for the lncRNA datasets (Table S4). In addition, the 
length of all the miRNAs was 18–35 nt, most of which 
were 21–23 nt (Fig.  1B), and rRNA accounted for less 
than 1.35% (Fig.  1C). The classification of lncRNAs is 
shown in Fig. 1D, with 48.7% of the reads were lncRNAs 
(i.e., antisense lncRNAs and lncRNAs). We identified 
17,959 lncRNA transcripts from the intersection of the 
coding potential calculator (CPC), coding-non-coding 
index (CNCI), and protein families database (Pfam) 
(Fig. 1E).

Differential expression analysis of mRNAs, MiRNAs and 
LncRNAs
To explore the characteristics of different developmen-
tal stages, we first verified the reliability of the identi-
fied RNAs with principal component analysis (PCA) and 
hierarchical cluster analysis (HCA) (Fig. 2). Although the 
sample size is limited, samples in the same group cluster 
together roughly. Next, we performed differential expres-
sion analysis between groups for each sequencing data-
set separately. The former group (e.g., “0 d” in “0 d vs. 1 
mon”) was used as the control group when we mentioned 
up-regulated and down-regulated expressions/genes.

Fig. 2 Principal component analysis (PCA) (A-C) and hierarchical cluster analysis (HCA) (D-F) of samples in mRNA, miRNA and lncRNA sequencing
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Among the comparisons, we detected a total of 2,995 
differentially expressed (DE) genes from RNA-seq, 1,211 
DE-lncRNAs from lncRNA-seq and 305 DE-miRNAs 
from miRNA-seq (Fig.  3A-C). For mRNA-seq, 44 genes 
were detected in all three comparisons, whereas 308, 231 
and 1,777 DEGs were exclusively differentially expressed 
in the comparison of “0 d vs. 1 mon”, “1 mon vs. 6 mon” 
and “0 d vs. 1 mon”, respectively (Fig. 3D). Besides, there 
was small difference in the number of up and down-reg-
ulated DEGs across the three comparisons (Fig. 3A). For 
miRNA-seq, we detected the greatest number of DEGs in 
the comparison of “0 d vs. 6 mon”, followed by “0 d vs. 1 
mon” and “1 mon vs. 6 mon” (Fig.  3B), which included 
93 and 74 DE-miRNAs that were up- and down-reg-
ulated in the comparison of “0 d vs. 6 mon”, 39 and 30 
DE-miRNAs that were up- and down-regulated in the 
comparison of “0 d vs. 1 mon”, and 53 and 16 DE-miR-
NAs that were up- and down-regulated in the compari-
son of “1 mon vs. 6 mon” (Fig. 3B). The greatest number 
of unique DE-miRNAs was detected in the comparison 
of “0 d vs. 6 mon”, followed by “1 mon vs. 6 mon” and “0 
d vs. 1 mon” (Fig. 3E). We also observed that the number 
of up-regulated DE-miRNAs was generally greater than 
that of down-regulated DE-miRNAs (Fig.  3B). In terms 
of lncRNA-seq, we found the greatest number of DE-
lncRNAs in the comparison of “21 d vs. 27 d”, including 
389 up-regulated and 703 down-regulated DE-lncRNAs 
(Fig. 3C). Additionally, only 8 DE-lncRNAs were detected 
in all three comparisons, whereas 19,865 and 71 lncRNAs 
were uniquely differentially expressed in the comparison 

of “21 d vs. 24 d”, “21 d vs. 27 d” and “24 d vs. 27 d”, 
respectively (Fig. 3F).

Functional enrichment of differentially expressed mRNAs, 
MiRNAs and LncRNAs
To investigate the functions of the differentially expressed 
genes, we performed Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analyses 
for comparisons of each sequencing dataset separately 
(Tables S5-S9). We mainly focused on the comparison of 
which harbored the greatest number of DE-RNAs. We 
found the highest number of DE genes in the “1 mon vs. 
6 mon” comparison, which included 1,178 up-regulated 
and 954 down-regulated DE genes (Fig.  4A). We then 
performed functional enrichment for these genes and 
found that the functions of the up- and down-regulated 
DEGs were different (Fig.  4B and C). For example, up-
regulated DE genes were associated with the GO terms 
“action filament-based process” (e.g., CACNA2D1, 
AKAP9 and RYR2) and “anatomical structure develop-
ment” (e.g., HOMER1, MYOC and GSK3B) (Fig.  4B, 
Table S5 and Table S6), whereas down-regulated DEGs 
were largely associated with macromolecule metabolic 
processes (e.g., ATF3, JAK2 and IDE) (Fig. 4C).

For miRNA-seq, the hierarchical clustering of the DE-
miRNAs heatmap showed their expression dynamics 
at three time points (Fig.  5A). We detected the great-
est number of DE-miRNAs in the comparison of “0 d 
vs. 6 mon” (Fig. 5B). The top 10 GO terms were associ-
ated with basic biological processes (Table S7), such as 

Fig. 3 Differentially expressed DE genes, DE-miRNAs and DE-lncRNAs between different developmental stages. A-C The number of up- and down-
regulated DEGs (A), DE-miRNAs (B) and DE-lncRNAs (C) in each pairwise comparison. D-F Venn diagram of DEGs (D), DEMs (E) and DELs (F) in each 
pairwise comparison
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“transport” (e.g., SPTBN2 and TGFB3), “single-organism 
transport” (e.g., CAMK1 and CLCN3) and “establish-
ment of localization” (e.g., CHMP7 and RTN2). Besides, 
we also found several muscle-related GO terms (Fig. 5C), 
such as “positive regulation of growth” (e.g., SMO, TBX2 
and WNT3 A) and “striated muscle cell differentiation” 

(e.g., MYOG, MYPN and EDN1). For lncRNA-seq, 
we examined the expression of the DE-lncRNAs and 
observed large changes in the comparison of “21 d vs. 27 
d” (Fig. 6A), which obtained the greatest number of DE-
lncRNAs (Fig. 6B). Surprisingly, we found that the top 10 
GO terms from this comparison were closely related to 

Fig. 5 Differential expression analysis of miRNAs between 0 day and 6 months. A Heatmap showing the expression of DE-miRNAs in all the miRNA 
samples. B Volcano plots of up-regulated and down-regulated between 0 day and 6 months. The blue dots represent non-significant DEGs. C Muscle-
related GO terms enriched from DE-miRNAs in the “0 d vs. 6 mon” comparison

 

Fig. 4 Differential expression analysis of mRNAs between 1 month and 6 months. A Volcano plots of up-regulated and down-regulated DEGs between 
1 month and 6 months. The blue dots represent non-significantly DEGs. B, C The top 10 GO terms enriched from down- and up-regulated DEGs in the 
“1 mon vs. 6 mon” comparison. The blue bar represents terms of down-regulated genes (B) and the red bar represents terms of up-regulated genes (C)
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muscle development (Fig. 6C, Table S8, Table S9), such as 
“muscle structure development” (e.g., TNNC1, MYF6 and 
MYL3), “muscle organ development” (e.g., ACTN3, IGF1 
and MYLK2) and “skeletal muscle organ development” 
(e.g., MSTN, MYOG and CXCL9).

Interaction of differentially expressed LncRNAs between 
key time points
To address how miRNAs and lncRNAs interact with their 
target genes (mRNAs) to regulate rabbit muscle develop-
ment, we predicted potential target genes and investi-
gated their functions. The results of the above differential 
expression analysis, we found the greatest number of 
DE-lncRNAs in the comparison of “21 d vs. 27 d”, and 
their function was associated with muscle growth. Pre-
vious studies have confirmed that lncRNAs regulate the 

expression of neighboring protein-coding genes through 
cis-acting mechanisms [28]. Thus, we performed co-
expressed gene analysis between lncRNAs and mRNAs 
with a correlation coefficient > 0.95 as the threshold and 
concentrated on this comparison. The directed acyclic 
graph (DAG) plot for GO terms enriched from the tar-
get genes of the DE-lncRNAs showed complex regulatory 
network (Fig. 7).

Discussion
The growth and development of muscle is a dynamic and 
complex process that largely affects the meat production 
of livestock. In this study, we systemically investigated 
the complex regulatory landscape of muscle development 
by conducting a comprehensive sequencing analysis of 
mRNAs, miRNAs, and lncRNAs. Myogenesis is a highly 

Fig. 6 Differential expression analysis of lncRNAs between 21 days and 27 days. A Heatmap showing the expression of DE-lncRNAs in all the lncRNA 
samples. B Volcano plots of up-regulated and down-regulated between 21 days and 27 days. The blue dots represent non-significant DEGs. C The top 10 
GO terms enriched DE-lncRNAs in the “21 d vs. 27 d” comparison
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coordinated developmental process. Our transcriptome 
data included three time points that can cover differ-
ent stages. For mRNAs and miRNAs, we selected 0 day, 
1 month and 6 months to represent the fetal, child, and 
adult periods of rabbits, respectively [29, 30]. The total 
number of fibers is fixed during the first postnatal month 
of myogenesis in rabbits [30]. In particular, longissimus 
dorsi is no longer expressed 27 days after birth [31]. 
Hence we selected 21 days, 24 days and 27 days to explore 
lncRNA changes. By performing PCA and HCA analy-
ses, we found that samples in the same group tended to 

cluster together (Fig. 2) and verified the reliability of the 
data for downstream analysis.

Differential expression analysis revealed that gene 
expression changes corresponded to distinct develop-
mental stages. The comparison of mRNA and miRNA 
datasets revealed a total of 2,995 DE genes and 305 DE-
miRNAs, respectively, with notable variations in expres-
sion patterns. The lncRNA-seq analysis identified 1,211 
DE-lncRNAs, and the most significant changes were 
observed between 21 d and 27 d. We found gene PAX7 
and MEF2 were down-regulated in the comparison 
of “21 d vs. 27 d” (Table S9) only. PAX7 is expressed in 

Fig. 7 Directed acyclic graph (DAG) plot of the enriched GO terms for the target genes of the DE-lncRNAs
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satellite cells during the postnatal development of rab-
bits and plays an important role in muscle regeneration 
and repair. Similar functions have also been reported in 
mice and chickens [32]. MEF2 serves as a transcription 
factor that can regulate muscle fiber identity and mainte-
nance. The down-regulation of these two genes suggested 
that the number of fibers stopped increasing in the first 
postnatal month in rabbits [30]. Moreover, muscle also 
can change their functional characteristics in response 
to the physiological stage (i.e., growing, maintaining and 
senescing) of animals. For instance, the dynamic expres-
sion of miRNAs and lncRNAs in 7 different periods in 
goats was reported to affect skeletal muscle development 
[33, 34]. In black Muscovy duck, differentially expressed 
genes like MyoG, FBXO1, MEF2 A, and FoxN2 in leg 
muscle were enriched in growth-related biological pro-
cesses [35]. These findings suggest that myogenesis is 
relatively conserved among species.

Functional enrichment analysis of the DE mRNAs and 
miRNAs shed light on their biological roles, with a par-
ticular emphasis on the “1 mon vs. 6 mon” comparison 
for mRNAs. This analysis revealed that the up-regu-
lated DE genes were involved in processes such as actin 
filament-based movement (e.g., CACNA2D1, AKAP9 
and RYR2) and anatomical structure development (e.g., 
HOMER1, MYOC and GSK3B) (Fig.  4B), while down-
regulated DE genes were predominantly associated 
with macromolecule metabolism (e.g., ATF3, JAK2 and 
IDE) (Fig.  4C). miRNA-seq analysis revealed a dynamic 
expression pattern, with the “0 d vs. 6 mon” comparison 
yielding the greatest number of DE-miRNAs (Fig.  3B). 
The GO terms associated with these miRNAs pointed 
towards fundamental biological processes and muscle-
specific functions (Fig.  5C), such as positive regulation 
of growth (e.g., SMO, TBX2 and WNT3 A) and stri-
ated muscle cell differentiation (e.g., MYOG, MYPN and 
EDN1). Notably, we detected the greatest number of DE-
lncRNAs in the comparison of “21 d vs. 27 d” (Fig. 3C), 
and the functions of these DE-lncRNAs were closely 
associated with muscle growth (Fig.  6C). MyoG and 
Myf5, these two important MRFs were largely enriched 
in multiple muscle-related GO terms, such as “muscle 
organ development” and “striated muscle tissue develop-
ment” (Fig. 6, Table S9) in the comparison of “21 d vs. 27 
d”. In addition, interaction analysis between DE-lncRNAs 
and their target genes unveiled a complex regulatory net-
work. Our co-expression analysis used a stringent thresh-
old of correlation > 0.95, and the subsequent DAG plot of 
GO terms enriched from the target genes clearly showed 
the intricate interplay between lncRNAs and mRNAs in 
modulating muscle development (Fig. 7).

Furthermore, the above mentioned target genes play 
important roles in muscle development. Myogenic cell 
specification and differentiation are determined by 

the master transcription factor MyoD in concert with 
other myogenic regulatory factors (MRFs) [36]. In par-
ticular, MyoG plays a central role in the terminal dif-
ferentiation of myoblasts into mature muscle fibers 
[37]. Besides, MyoG is regulated by growth factor sig-
naling pathways, especially the IGF1 pathway. IGF1 
can enhance the expression of above-mentioned MRFs 
by activating the PI3 K/Akt pathway, which works col-
lectively to promote muscle growth and repair [38]. 
Previous study reported that the interplay between 
IGF signaling and MRFs can also be modulated by 
miRNAs like miR- 1 and miR- 133 [39]. These results 
suggest dramatic lncRNA changes in the expression 
of myosin heavy chain isoforms in the first postnatal 
month. Besides, gene MYOC encodes a protein that 
belongs to the olfactomedin family and is expressed 
in various tissues, including skeletal muscle. Although 
its specific function in muscle is not well character-
ized, it is known to be involved in the development 
and maintenance of muscle mass, potentially through 
interactions with other muscle regulatory factors [40]. 
WNT3 A belongs to the Wnt signaling pathway, this 
pathway regulates muscle formation and the main-
tenance of adult tissue homeostasis [41, 42]. Besides, 
JAK2 is part of the JAK-STAT signaling pathway. This 
pathway is involved in the regulation of muscle growth 
and differentiation, with JAK2 being a key mediator of 
these processes. Mutations in JAK2 have been associ-
ated with myeloproliferative disorders, which can have 
secondary effects on muscle function [43]. The RYR2 
gene encodes the type 2 ryanodine receptor, a calcium 
release channel found in the sarcoplasmic reticulum 
of muscle cells. It is essential for the regulation of cal-
cium ions during muscle contraction and relaxation. 
Dysfunction of RYR2 has been implicated in various 
muscle diseases, including malignant hyperthermia 
and central core disease, highlighting its importance 
in muscle function [44]. Overall, these genes and their 
protein products are integral to the complex processes 
of muscle growth, development, and maintenance.

The present study has several limitations. First, the 
small sample size for each time point has potential 
impact on expression patterns, although unrelated fac-
tors were controlled. Previous studies have reported 
that sufficient biological replicates enable to capture of 
authentic biological variability and avoid technical arti-
facts [45, 46]. Proper statistical models or decreased mul-
tiple comparisons can also reduce false positive errors. In 
addition, quantitative polymerase chain reaction (qPCR) 
is one of the most reliable methods for validating gene 
expression [47] and has been widely used in transcrip-
tome research. Due to the restriction of sample collec-
tion, our study only explored expression patterns during 
muscle development based on sequencing data. In future 
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work, we will cautiously consider the impact of sample 
size and add a qPCR experiment to validate the expres-
sion of candidate genes. Second, tissues were collected 
from males only. Thus, sex-based differences in muscle 
expression cannot be addressed. Future research could 
benefit from the increased sample size of both male and 
female rabbits and the use of different layers of multi-
omics data (e.g., chromatin accessibility and DNA meth-
ylation). It will greatly enhance the understanding of the 
regulation of rabbit muscle development.

Conclusions
This study provides a comprehensive overview of the 
transcriptomic changes that occur during muscle devel-
opment. The identification and functional annotation 
of DE genes, miRNAs, and lncRNAs provide valuable 
insights into the molecular mechanisms underlying this 
process. These findings pave the way for investigations 
into the role of non-coding RNAs in muscle biology.
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